Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(19): 30863-30875, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710619

ABSTRACT

Despite the steady advancements in nanofabrication made over the past decade that had prompted a plethora of intriguing applications across various fields, achieving compatibility between miniaturized photonic devices and electronic dimensions remains unachievable due to the inherent diffraction limit of photonic devices. Herein, we present an approach based on anisotropic scaling of the shapes of photonic crystals (PhCs) to overcome the diffraction limit and achieve controlled diffraction limit along the ΓX direction. Thus, we demonstrate that scaling the direction perpendicular to the wave's propagation (y-direction) by 1/2 and 1/4 significantly improves the diffraction limit by two and four orders of magnitude, respectively. This approach opens up possibilities for high-frequency wave guiding in a cermet configuration, which was previously unachievable. Furthermore, we illustrate the existence of a quasi-bound state in the continuum (QBICs) in asymmetric dimer network-type photonic crystals (PhCs).

2.
Nano Converg ; 10(1): 15, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997831

ABSTRACT

Nanorings (NRs) with their intrinsic cavities have attracted interest as plasmonic nanoparticles for years, due to the uniform electric field enhancement inside the cavity, lower plasmon damping effects and comparatively high refractive index sensitivities. In the present work, we successfully fabricated a series of Au NR arrays on flexible polydimethylsiloxane substrates by taking advantage of state-of-the-art fabrication methods such as electron beam lithography and wet-etching transfer techniques. In-situ optical measurements on these flexible systems are enabled by implementing a homemade micro-stretcher inside an optical reflection spectroscopy setup. The corresponding dark-field spectra of thin-walled NR arrays exhibit a strong shift to longer wavelengths (i.e., ~ 2.85 nm per 1% strain) under polarization perpendicular to the traction, mainly resulting from the increasing shape deformation of the NRs under strain. Moreover, numerical simulations illustrate that the shifting plasmonic mode has a radially-symmetric charge distribution of the bonding mode and is rather sensitive to the tuning of the NRs' shape as confirmed by a subsequent in-situ scanning electron microscope characterization. These results explore the possibilities of shape-altering flexible plasmonics for nanoparticles with a cavity and indicate potential applications for plasmonic colors and biochemical sensing in future work.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36770337

ABSTRACT

The exploration of the propensity of engineered materials to bring forward innovations predicated on their periodic nanostructured tailoring rather than the features of their individual compounds is a continuous pursuit that has propelled optical sensors to the forefront of ultra-sensitive bio-identification. Herein, a numerical analysis based on the Finite Element Method (FEM) was used to investigate and optimize the optical properties of a unidirectional asymmetric dimer photonic crystal (PhC). The proposed device has many advantages from a nanofabrication standpoint compared to conventional PhCs sensors, where integrating defects within the periodic array is imperative. The eigenvalue and transmission analysis performed indicate the presence of a protected, confined mode within the structure, resulting in a Fano-like response in the prohibited states. The optical sensor demonstrated a promising prospect for monitoring the DNA hybridization process, with a quality factor (QF) of roughly 1.53×105 and a detection limit (DL) of 4.4×10-5 RIU. Moreover, this approach is easily scalable in size while keeping the same attributes, which may potentially enable gaze monitoring.

4.
J Opt Soc Am A Opt Image Sci Vis ; 32(5): 771-7, 2015 May 01.
Article in English | MEDLINE | ID: mdl-26366899

ABSTRACT

We propose a new monolithic interferometric configuration and implement a novel method for spectroscopic phase shift detection of surface plasmon resonance (SPR) sensors. The interference pattern is obtained using a nonpolarizing beam splitter cube with two attached right angle prisms in such a way that each interference field undergoes two total internal reflections (TIR) at prisms/air interface and one attenuated total reflection (ATR) through surface plasmon interaction. The evanescent part of the interferogram around the Zero optical path difference (ZOPD) is sampled and detected in the far field, thanks to a bidimensional array of scattering optical near-field probes deposited on the corresponding prism surface. A Fourier transform of the sampled interferogram is performed to measure the input light wavelength, while a direct comparison of the interferogram in TM and TE polarization modes allows us to determine the differential phase shift induced by the SPR layer. The phase shift measurement is made possible thanks to a remarkable time stability of the interferogram in the glass bulk. By tuning the input laser wavelength around the resonance, we show a good agreement between experimental and theoretical calculations for both amplitude and phase spectral responses.


Subject(s)
Surface Plasmon Resonance/instrumentation , Transducers , Gold/chemistry , Interferometry , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...