Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(10): e20608, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860557

ABSTRACT

Due to the rapid urbanization of many cities around the world, industrial manufacturing plants have been expanded quickly, leading to the discharge of large amounts of pollutants into the environment. Consequently, a significant deterioration in local air quality is recorded, representing a high health risk for the city's residents. In this context, the main objective of this work is to understand the dispersion of gas pollution in high-density urban environments, specifically the Hail region of Saudi Arabia. The simulations carried out with Ansys Fluent 19.0 were based on actual climatic conditions, with particular attention paid to accurately reproducing the exact topography of the study area. The main results concern the characterization of flow behavior and the dispersion of gas pollutants emitted by power plants. Several factors, including building geometry and wind speed, are examined. The study reveals that for a reference wind speed of more than 7 m/s, gaseous pollution exhibits a significant tendency to accumulate within buildings, resulting in significant concentrations.

2.
ACS Omega ; 7(32): 27864-27875, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990482

ABSTRACT

A combined turbulent wall jet and offset jet (also known as the dual jet) with and without the presence of a parallel co-flow stream is studied. The standard k-ω turbulence model is used to predict the turbulent flow. The study focuses on the effects of the co-flow velocity (CFV) on the heat-transfer characteristics of the dual jet flow with the bottom wall maintained at a constant wall temperature. The CFV is varied up to 40% of the jet inlet velocity, and the height of the offset jet is varied from 5 to 11 times the jet width with the inlet Reynolds number taken as 15,000. The heat-transfer results reveal that the local Nusselt number (Nu x ) along the bottom wall exhibits a peak at the immediate downstream of the nozzle exit, followed by a continuous decay in the rest of the converging region before showing a small rise for a short streamwise distance in the merging region. Further downstream, in the combined region, Nu x gradually decreases with the downstream distance. Except the merging region, no influence of co-flow is observed in the other two flow zones (converging and combined regions). In the merging region, for a given offset ratio (OR), Nu x remains nearly constant for a certain axial distance, and it decreases as the CFV increases. As a result of the increase in the CFV, the average Nusselt number decreases, indicating a reduction in overall convective heat transfer for higher values of the CFV. A regression analysis among the average Nusselt number (), CFV, and OR results in a correlation function in the form of within the range OR = 5-11 and CFV = 0-40%.

SELECTION OF CITATIONS
SEARCH DETAIL
...