Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18665, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907579

ABSTRACT

In near-collisionless plasmas, which are ubiquitous in astrophysics, entropy production relies on fully-nonlinear processes such as turbulence and reconnection, which lead to particle acceleration. Mechanisms for turbulent reconnection include multiple magnetic flux ropes interacting to generate thin current sheets which undergo reconnection, leading to mixing and magnetic merging and growth of coherent structures, unstable reconnection current layers that fragment and turbulent reconnection outflows. All of these processes act across, and encompass, multiple reconnection sites. We use Magnetospheric Multi Scale four-point satellite observations to characterize the magnetic field line topology within a single reconnection current layer. We examine magnetopause reconnection where the spacecraft encounter the Electron Diffusion Region (EDR). We find fluctuating magnetic field with topology identical to that found for dynamically evolving vortices in hydrodynamic turbulence. The turbulence is supported by an electron-magnetohydrodynamic (EMHD) flow in which the magnetic field is effectively frozen into the electron fluid. Accelerated electrons are found in the EDR edge where we identify a departure from this turbulent topology, towards two-dimensional sheet-like structures. This is consistent with a scenario in which sub-ion scale turbulence can suppress electron acceleration within the EDR which would otherwise be possible in the electric field at the X-line.

2.
Phys Rev Lett ; 94(20): 204502, 2005 May 27.
Article in English | MEDLINE | ID: mdl-16090255

ABSTRACT

Incompressible magnetohydrodynamics is often assumed to describe solar wind turbulence. We use extended self-similarity to reveal scaling in the structure functions of density fluctuations in the solar wind. The obtained scaling is then compared with that found in the inertial range of quantities identified as passive scalars in other turbulent systems. We find that these are not coincident. This implies that either solar wind turbulence is compressible or that straightforward comparison of structure functions does not adequately capture its inertial range properties.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(5 Pt 2): 056404, 2003 May.
Article in English | MEDLINE | ID: mdl-12786284

ABSTRACT

The solar wind provides a natural laboratory for observations of magnetohydrodynamic (MHD) turbulence over extended temporal scales. Here, we apply a model independent method of differencing and rescaling to identify self-similarity in the probability density functions (PDF) of fluctuations in solar wind bulk plasma parameters as seen by the WIND spacecraft. Whereas the fluctuations of speed v and interplanetary magnetic field (IMF) magnitude B are multifractal, we find that the fluctuations in the ion density rho, energy densities B2 and rhov(2) as well as MHD-approximated Poynting flux vB(2) are monoscaling on the time scales up to 26 hr. The single curve, which we find to describe the fluctuations PDF of all these quantities up to this time scale, is non-Gaussian. We model this PDF with two approaches--Fokker-Planck, for which we derive the transport coefficients and associated Langevin equation, and the Castaing distribution that arises from a model for the intermittent turbulent cascade.

SELECTION OF CITATIONS
SEARCH DETAIL
...