Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Biomech ; 37(5): 415-424, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34453018

ABSTRACT

Estimating center of mass (COM) through sensor measurements is done to maintain walking and standing stability with exoskeletons. The authors present a method for estimating COM kinematics through an artificial neural network, which was trained by minimizing the mean squared error between COM displacements measured by a gold-standard motion capture system and recorded acceleration signals from body-mounted accelerometers. A total of 5 able-bodied participants were destabilized during standing through: (1) unexpected perturbations caused by 4 linear actuators pulling on the waist and (2) volitionally moving weighted jars on a shelf. Each movement type was averaged across all participants. The algorithm's performance was quantified by the root mean square error and coefficient of determination (R2) calculated from both the entire trial and during each perturbation type. Throughout the trials and movement types, the average coefficient of determination was 0.83, with 89% of the movements with R2 > .70, while the average root mean square error ranged between 7.3% and 22.0%, corresponding to 0.5- and 0.94-cm error in both the coronal and sagittal planes. COM can be estimated in real time for balance control of exoskeletons for individuals with a spinal cord injury, and the procedure can be generalized for other gait studies.


Subject(s)
Gait , Postural Balance , Accelerometry , Biomechanical Phenomena , Humans , Walking
2.
Front Neurorobot ; 15: 750519, 2021.
Article in English | MEDLINE | ID: mdl-34975445

ABSTRACT

Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.

3.
J Biomech ; 75: 96-101, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29789150

ABSTRACT

Force plates for human movement analysis provide accurate measurements when mounted rigidly on an inertial reference frame. Large measurement errors occur, however, when the force plate is accelerated, or tilted relative to gravity. This prohibits the use of force plates in human perturbation studies with controlled surface movements, or in conditions where the foundation is moving or not sufficiently rigid. Here we present a linear model to predict the inertial and gravitational artifacts using accelerometer signals. The model is first calibrated with data collected from random movements of the unloaded system and then used to compensate for the errors in another trial. The method was tested experimentally on an instrumented force treadmill capable of dynamic mediolateral translation and sagittal pitch. The compensation was evaluated in five experimental conditions, including platform motions induced by actuators, by motor vibration, and by human ground reaction forces. In the test that included all sources of platform motion, the root-mean-square (RMS) errors were 39.0 N and 15.3 N m in force and moment, before compensation, and 1.6 N and 1.1 N m, after compensation. A sensitivity analysis was performed to determine the effect on estimating joint moments during human gait. Joint moment errors in hip, knee, and ankle were initially 53.80 N m, 32.69 N m, and 19.10 N m, and reduced to 1.67 N m, 1.37 N m, and 1.13 N m with our method. It was concluded that the compensation method can reduce the inertial and gravitational artifacts to an acceptable level for human gait analysis.


Subject(s)
Ankle Joint/physiology , Gait/physiology , Gravitation , Hip Joint/physiology , Knee Joint/physiology , Linear Models , Accelerometry , Artifacts , Biomechanical Phenomena , Exercise Test , Humans , Mechanical Phenomena
4.
PeerJ ; 3: e918, 2015.
Article in English | MEDLINE | ID: mdl-25945311

ABSTRACT

Here we share a rich gait data set collected from fifteen subjects walking at three speeds on an instrumented treadmill. Each trial consists of 120 s of normal walking and 480 s of walking while being longitudinally perturbed during each stance phase with pseudo-random fluctuations in the speed of the treadmill belt. A total of approximately 1.5 h of normal walking (>5000 gait cycles) and 6 h of perturbed walking (>20,000 gait cycles) is included in the data set. We provide full body marker trajectories and ground reaction loads in addition to a presentation of processed data that includes gait events, 2D joint angles, angular rates, and joint torques along with the open source software used for the computations. The protocol is described in detail and supported with additional elaborate meta data for each trial. This data can likely be useful for validating or generating mathematical models that are capable of simulating normal periodic gait and non-periodic, perturbed gaits.

5.
J Biomech ; 47(15): 3758-61, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25458202

ABSTRACT

Instrumented treadmills provide a convenient means for applying horizontal perturbations during gait or standing. However, varying the treadmill belt speed introduces inertial artifacts in the sagittal plane moment component of the ground reaction force. Here we present a compensation method based on a second-order dynamic model that predicts inertial pitch moment from belt acceleration. The method was tested experimentally on an unloaded treadmill at a slow belt speed with small random variations (1.20±0.10m/s) and at a faster belt speed with large random variations (2.00±0.50m/s). Inertial artifacts of up to 12Nm (root-mean-square, RMS) and 30Nm (peak) were observed. Coefficients of the model were calibrated on one trial and then used to predict and compensate the pitch moment of another trial with different random variations. Coefficients of determination (R(2)) were 72.08% and 96.75% for the slow and fast conditions, respectively. After compensation, the root-mean-square (RMS) of the inertial artifact was reduced by 47.37% for the slow speed and 81.98% for fast speed, leaving only 1.5Nm and 2.1Nm of artifact uncorrected, respectively. It was concluded that the compensation technique reduced inertial errors substantially, thereby improving the accuracy in joint moment calculations on an instrumented treadmill with varying belt speed.


Subject(s)
Exercise Test/instrumentation , Acceleration , Artifacts , Calibration , Exercise Test/methods , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...