Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 700
Filter
1.
Food Chem ; 459: 140335, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981383

ABSTRACT

The characteristic aroma compounds of traditional braised pork were investigated by gas chromatography-mass spectrometry-olfactometry (GC-MS-O), odor-activity values, and aroma recombination and omission experiments. A total of 56 volatile compounds were detected by GC-MS, among which hexanal, octanal, nonanal, (E)-2-octenal, 2,3-octanedione, 1-octen-3-ol, 2-pentylfuran, methanethiol, and dimethyl trisulfide were identified as the key aroma compounds by molecular sensory science. Partial least squares regression analysis indicated that some aroma compounds significantly contributed to fatty (hexanal, heptanal, 2-pentylfuran, nonanal, and (E)-2-octenal), meaty (methanethiol, dimethyl disulfide, dimethyl trisulfide, and octanal), sauce-like flavor (3-hydroxy-2-butanone and 2-furfural), and sweet, caramel (2,3-octanedione, 1-octen-3-ol). Lean meat produced more aldehydes, alcohols, ketones, and sulfur-containing compounds than subcutaneous fat. The seasonings (saccharose, cooking wine, and soy sauce) facilitated the formation of ethyl L-lactate, 2-acetylfuran, 2-furfural, 5-methyl-2-furaldehyde, 2-methyl-pyrazine, and 2-acetylpyrrole. Meanwhile they reduced the content of lipid oxidation products, thereby stimulated the characteristic aroma of the Chinese traditional braised pork.

2.
Phytother Res ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899498

ABSTRACT

Hepatic lipid metabolism is modulated by the circadian rhythm; therefore, circadian disruption may promote obesity and hepatic lipid accumulation. This study aims to investigate dietary pterostilbene (PSB) 's protective effect against high-fat-diet (HFD)-induced lipid accumulation exacerbated by chronic jet lag and the potential role of gut microbiota therein. Mice were treated with a HFD and chronic jet lag for 14 weeks. The experimental group was supplemented with 0.25% (w/w) PSB in its diet to evaluate whether PSB had a beneficial effect. Our study found that chronic jet lag exacerbates HFD-induced obesity and hepatic lipid accumulation, but these adverse effects were significantly mitigated by PSB supplementation. Specifically, PSB promoted hepatic lipolysis and ß-oxidation by upregulating SIRT1 expression, which indirectly reduced oxidative stress caused by lipid accumulation. Additionally, the PSB-induced elevation of SIRT1 and SIRT3 expression helped prevent excessive autophagy and mitochondrial fission by activating Nrf2-mediated antioxidant enzymes. The result was evidenced by the use of SIRT1 and SIRT3 inhibitors in in vitro studies, which demonstrated that activation of SIRT1 and SIRT3 by PSB is crucial for the translocation of PGC-1α and Nrf2, respectively. Moreover, the analysis of gut microbiota suggested that PSB's beneficial effects were partly due to its positive modulation of gut microbial composition and functionality. The findings of this study suggest the potential of dietary PSB as a candidate to improve hepatic lipid metabolism via several mechanisms. It may be developed as a treatment adjuvant in the future.

3.
Eur J Pharmacol ; 978: 176789, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945287

ABSTRACT

The increased incidence of obesity, which become a global health problem, requires more functional food products with minor side and excellent effects. Calebin A (CbA) is a non-curcuminoid compound, which is reported to be an effective treatment for lipid metabolism and thermogenesis. However, its ability and mechanism of action in improving obesity-associated hyperglycemia remain unclear. This study was designed to explore the effect and mechanism of CbA in hyperglycemia via improvement of inflammation and glucose metabolism in the adipose tissue and liver in high-fat diet (HFD)-fed mice. After 10 weeks fed HFD, obese mice supplemented with CbA (25 and 100 mg/kg) for another 10 weeks showed a remarkable reducing adiposity and blood glucose. CbA modulated M1/M2 macrophage polarization, ameliorated inflammatory cytokines, and restored adiponectin as well as Glut 4 expression in the adipose tissue. In the in vitro study, CbA attenuated pro-inflammatory markers while upregulated anti-inflammatory IL-10 in LPS + IFNγ-generated M1 phenotype macrophages. In the liver, CbA attenuated steatosis, inflammatory infiltration, and protein levels of inflammatory TNF-α and IL-6. Moreover, CbA markedly upregulated Adiponectin receptor 1, AMPK, and insulin downstream Akt signaling to improve glycogen content and increase Glut2 protein. These findings indicated that CbA may be a novel therapeutic approach to treat obesity and hyperglycemia phenotype targeting on adipose inflammation and hepatic insulin signaling.

4.
J Food Drug Anal ; 32(2): 227-238, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38934691

ABSTRACT

We aimed to investigate the therapeutic potential of ibuprofen against type 2 diabetes (T2D) using obese Zucker diabetic fatty (ZDF) rats as type 2 diabetes model. ZDF rats were hyperglycemic, dyslipidemic and expressed proinflammatory markers in contrast to lean controls, thus reflecting the relationship between obesity and chronic inflammation promoting T2D. Chronic treatment with ibuprofen (2-(4-Isobutylphenyl)propanoic acid) was used to study the impact on pathological T2D conditions as compared to metformin (1,1-dimethylbiguanide) treated ZDF as well as lean controls. Ibuprofen decreased A1c but induced a high insulin release with improved glucose tolerance only after early time points (i.g., 15 and 30 min) resulting in a non-significant decline of AUC values and translating into a high HOMA-IR. In addition, ibuprofen significantly lowered cholesterol, free fatty acids and HDL-C. Some of these effects by ibuprofen might be based on its anti-inflammatory effects through inhibition of cytokine/chemokine signaling (i.g., COX-2, ICAM-1 and TNF-α) as measured in whole blood and epididymal adipose tissue by TaqMan and/or upregulation of anti-inflammatory cytokines (i.g., IL-4 and IL-13) by ELISA analysis in blood. In conclusion, our ZDF animal study showed positive effects of ibuprofen against diabetic complications such as inflammation and dyslipidemia but also demonstrated the risk of causing insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Ibuprofen , Rats, Zucker , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Ibuprofen/pharmacology , Ibuprofen/administration & dosage , Rats , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Humans , Disease Models, Animal , Insulin/metabolism , Obesity/drug therapy , Obesity/metabolism , Cytokines/metabolism , Insulin Resistance
5.
Commun Biol ; 7(1): 749, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902371

ABSTRACT

Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.


Subject(s)
Dysbiosis , Emulsifying Agents , Gastrointestinal Microbiome , Metabolic Diseases , Animals , Dysbiosis/chemically induced , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Mice , Male , Metabolic Diseases/chemically induced , Metabolic Diseases/microbiology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Mice, Inbred C57BL , Carboxymethylcellulose Sodium , Sucrose/adverse effects , Sucrose/administration & dosage , Sucrose/metabolism , Insulin Resistance , Lecithins
6.
Int J Biol Macromol ; 272(Pt 1): 132738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825269

ABSTRACT

Piperine (PIP) has been known for its pharmacological activities with low water solubility and poor dissolution, which limits its nutritional application. The purpose of this research was to enhance PIP stability, dispersibility and biological activity by preparing PIP nanoparticles using the wet-media milling approach combined with nanosuspension solidification methods of spray/freeze drying. Octenyl succinic anhydride (OSA)-modified waxy maize starch was applied as the stabilizer to suppress aggregation of PIP nanoparticles. The particle size, redispersibility, storage stability and in vitro release behavior of PIP nanoparticles were measured. The regulating effect on adipocyte differentiation was evaluated using 3T3-L1 cell model. Results showed that PIP nanoparticles had a reduced particle size of 60 ± 1 nm, increased release rate in the simulated gastric (SGF) and intestinal fluids (SIF) and enhanced inhibition effect on adipogenesis in 3T3-L1 cells compared with free PIP, indicating that PIP-loaded nanoparticles with improved stability and anti-adipogenic property were developed successfully by combining wet-media milling and drying methods.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Alkaloids , Benzodioxoles , Nanoparticles , Piperidines , Polyunsaturated Alkamides , Starch , Animals , Mice , Nanoparticles/chemistry , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology , Benzodioxoles/pharmacology , Benzodioxoles/chemistry , Piperidines/pharmacology , Piperidines/chemistry , Adipogenesis/drug effects , Alkaloids/chemistry , Alkaloids/pharmacology , Adipocytes/drug effects , Starch/chemistry , Starch/analogs & derivatives , Particle Size , Drug Liberation , Cell Differentiation/drug effects
7.
J Agric Food Chem ; 72(26): 14786-14798, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902910

ABSTRACT

Some thermal degradants of curcuminoids have demonstrated moderate health benefits in previous studies. Feruloyl acetone (FER), recently identified as a thermal degradant of curcumin, has been previously associated with anticancer and antioxidative effects, yet its other capabilities remain unexplored. Moreover, earlier reports suggest that methoxy groups on the aromatic ring may influence the functionality of the curcuminoids. To address these gaps, an animal study was conducted to investigate the antiobesity effects of both FER and its demethoxy counterpart (DFER) on mice subjected to a high-fat diet. The results demonstrated the significant prevention of weight gain and enlargement of the liver and various adipose tissues by both samples. Furthermore, these supplements exhibited a lipid regulatory effect in the liver through the adiponectin/AMPK/SIRT1 pathway, promoted thermogenesis via AMPK/PGC-1α activation, and positively influenced gut-microbial-produced short-chain fatty acid (SCFA) levels. Notably, DFER demonstrated superior overall efficacy in combating obesity, while FER displayed a significant effect in modulating inflammatory responses. It is considered that SCFA may be responsible for the distinct effects of FER and DFER in the animal study. Future studies are anticipated to delve into the efficacy of curcuminoid degradants, encompassing toxicity and pharmacokinetic evaluations.


Subject(s)
Anti-Obesity Agents , Curcumin , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/metabolism , Mice , Obesity/metabolism , Obesity/drug therapy , Male , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/administration & dosage , Humans , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/drug effects , Liver/chemistry , Thermogenesis/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/chemistry
8.
Food Res Int ; 188: 114506, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823846

ABSTRACT

The characteristic aroma compounds of braised pork were identified through molecular sensory science and PLSR analysis, and the difference between two cooking methods, traditional open-fire (BPF) and induction cooker (BPC), was compared. Seventeen aroma compounds with odor activity values (OAVs) > 1 were identified in both samples. BPF revealed higher OAVs for most of the aroma compounds compared to BPC, and the higher aroma quality. Aroma recombination and omission experiments confirmed that twelve aroma compounds significantly contributed to the characteristic aroma of braised pork, and eight compounds such as hexanal, (E)-2-octenal, and methanethiol were further confirmed as important contributors by PLSR analysis. Furthermore, PLSR analysis clarified the role of aldehydes such as hexanal, (E)-2-octenal, and (E,E)-2,4-decadienal in contributing to fatty attribute, whereas methanethiol was responsible for the meaty aroma. These characteristic aroma compounds mainly derived from lean meat due to its high content of phospholipids, and the exogenous seasonings contributed to the balanced characteristic aroma profile of braised pork by altering the distribution of these characteristic aroma compounds. Variations in heating parameters affected the formation of lipid oxidation and Strecker degradation products, which might explain aroma discrepancy between braised pork cooked by two methods with different heat transfer efficiencies.


Subject(s)
Aldehydes , Cooking , Odorants , Cooking/methods , Odorants/analysis , Animals , Swine , Aldehydes/analysis , Volatile Organic Compounds/analysis , Pork Meat/analysis , Humans , Sulfhydryl Compounds/analysis
9.
J Agric Food Chem ; 72(21): 12184-12197, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38745351

ABSTRACT

Oolong tea polyphenols (OTP) have attracted wide attention due to their ability to reduce inflammatory response, regulate gut microbiota, and improve cognitive function. However, exactly how the gut microbiota modulates nervous system activity is still an open question. We previously expounded that supplementing with OTP alleviated neuroinflammation in circadian rhythm disorder (CRD) mice. Here, we showed that OTP can relieve microglia activation by reducing harmful microbial metabolites lipopolysaccharide (LPS) that alleviate CRD-induced cognitive decline. Mechanistically, OTP suppressed the inflammation response by regulating the gut microbiota composition, including upregulating the relative abundance of Muribaculaceae and Clostridia_UCG-014 and downregulating Desulfovibrio, promoting the production of short-chain fatty acids (SCFAs). Moreover, the use of OTP alleviated intestinal barrier damage and decreased the LPS transport to the serum. These results further inhibited the activation of microglia, thus alleviating cognitive impairment by inhibiting neuroinflammation, neuron damage, and neurotoxicity metabolite glutamate elevation. Meanwhile, OTP upregulated the expression of synaptic plasticity-related protein postsynaptic density protein 95 (PSD-95) and synaptophysin (SYN) by elevating the brain-derived neurotrophic factor (BDNF) level. Taken together, our findings suggest that the OTP has the potential to prevent CRD-induced cognition decline by modulating gut microbiota and microbial metabolites.


Subject(s)
Camellia sinensis , Chronobiology Disorders , Cognitive Dysfunction , Gastrointestinal Microbiome , Mice, Inbred C57BL , Neuroprotective Agents , Polyphenols , Tea , Gastrointestinal Microbiome/drug effects , Animals , Polyphenols/pharmacology , Polyphenols/administration & dosage , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Male , Tea/chemistry , Camellia sinensis/chemistry , Neuroprotective Agents/pharmacology , Chronobiology Disorders/metabolism , Chronobiology Disorders/drug therapy , Chronobiology Disorders/physiopathology , Humans , Bacteria/classification , Bacteria/drug effects , Bacteria/metabolism , Bacteria/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Microglia/drug effects , Microglia/metabolism , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry
10.
Food Funct ; 15(12): 6217-6231, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38767618

ABSTRACT

Cinnamaldehyde (CA) is the main bioactive component extracted from the internal bark of cinnamon trees with many health benefits. In this paper, the bioavailability and biological activities of cinnamaldehyde, and the underlying molecular mechanism are reviewed and discussed, including antioxidant, cardioprotective, anti-inflammatory, anti-obesity, anticancer, and antibacterial properties. Common delivery systems that could improve the stability and bioavailability of CA are also summarized and evaluated, such as micelles, microcapsules, liposomes, nanoparticles, and nanoemulsions. This work provides a comprehensive understanding of the beneficial functions and delivery strategies of CA, which is useful for the future application of CA in the functional food industry.


Subject(s)
Acrolein , Drug Delivery Systems , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Humans , Drug Delivery Systems/methods , Animals , Administration, Oral , Biological Availability , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Cinnamomum zeylanicum/chemistry
11.
J Food Sci ; 89(6): 3745-3758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752387

ABSTRACT

α-Dicarbonyls and advanced glycation end products (AGEs) are the heat-induced potential toxicants commonly found in thermally processed foods due to the Maillard reaction. Research has shown that both α-dicarbonyls and AGEs can cause oxidative stress and inflammation and have a positive link with several chronic diseases, such as diabetes. This study found that commonly consumed berry fruits exhibited excellent methylglyoxal (MGO)-trapping and antiglycative activities, positively associated with their total phenolic and flavonoid contents. Blackcurrant exhibited the strongest MGO-trapping and antiglycative activities among the tested berry fruits. In addition, we demonstrated that fortification with blackcurrant significantly reduced α-dicarbonyls and AGEs formation in the chocolate cookies and marinated ground pork. Delphinidin and cyanidin glycosides were identified as the primary bioactive compounds of blackcurrant that trapped MGO to form the corresponding mono- and di-MGO adducts. This study suggested that blackcurrant anthocyanins might serve as a novel additive to reduce the consumption of dietary reactive carbonyl species and AGEs from both animal- and plant-derived processed foods. PRACTICAL APPLICATION: The levels of α-dicarbonyls and advanced glycation end products in ground pork and cookies were significantly reduced when fortified with blackcurrant. The blackcurrant anthocyanins might be a novel agent inhibiting α-dicarbonyls and dietary advanced glycation end products formation in thermally processed foods.


Subject(s)
Anthocyanins , Fruit , Glycation End Products, Advanced , Pyruvaldehyde , Ribes , Anthocyanins/analysis , Anthocyanins/chemistry , Anthocyanins/pharmacology , Glycation End Products, Advanced/analysis , Fruit/chemistry , Animals , Swine , Ribes/chemistry , Maillard Reaction , Meat Products/analysis , Food Handling/methods
12.
Front Pharmacol ; 15: 1375779, 2024.
Article in English | MEDLINE | ID: mdl-38751784

ABSTRACT

To expand the application of nobiletin (NOB) in semi-solid functional foods, bovine serum albumin (BSA)/carboxymethyl inulin (CMI) complexes-stabilized Pickering emulsion (BCPE) (φoil = 60%, v/v) was fabricated, and the swallowing index and bioavailability of the NOB-loaded Pickering emulsion was evaluated. Confocal laser scanning microscope (CLSM) and cryo-scanning electron microscopy (cryo-SEM) images revealed that BSA/CMI complexes attached to the oil-water interface. NOB-loaded BCPE exhibited a viscoelastic and shear-thinning behavior. Fork drip test results suggested that the textural value of unloaded and NOB-loaded emulsions was International Dysphagia Diet Standardisation Initiative Level 4, which could be swallowed directly without chewing. The in vitro lipolysis model suggested that NOB had a faster digestive profile and a higher bioaccessibility in the BCPE than in the oil suspension. The in vivo rat model revealed that the oral bioavailability of NOB was increased by 2.07 folds in BCPE compared to its bioavailability in unformulated oil. Moreover, BCPE led to a higher plasma concentration of the major demethylated metabolite of NOB (4'-demethylnobiletin) than the unformulated oil. Accordingly, BCPE enhanced the oral bioavailability of NOB by improving bioaccessibility, absorption, and biotransformation.

13.
J Agric Food Chem ; 72(19): 11153-11163, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695891

ABSTRACT

Maillard reaction (MR) plays a pivotal role in the food flavor industry, including a cascade of reactions starting with the reaction between amino compounds and reducing sugars, and thus provides various colors and flavors. A new group of volatile compounds called pyrazinones found in MR are now getting more attention. In this study, eight volatile pyrazinones were found in the asparagine MR systems, in which 3,5-dimethyl- and 3,6-dimethyl-2(1H)-pyrazinones were reported for the first time. The major formation pathways were the reactions between asparagine and α-dicarbonyls, with decarboxylation as a critical step. Besides, novel alternative pathways involving alanine amidation and successive reactions with α-dicarbonyls were explored and successfully formed eight pyrazinones. The major differences between alanine-amidated pathways and decarboxylation pathways are the amidation step and absence of the decarboxylation step. For the alanine-amidated pathways, the higher the temperature, the better the amidation effect. The optimal amidation temperature was 200 °C in this study. The reaction between the alanine amide and α-dicarbonyls after amidation can happen at low temperatures, such as 35 and 50 °C, proposing the possibility of pyrazinone formation in real food systems. Further investigations should be conducted to investigate volatile pyrazinones in various food systems as well as the biological effects and kinetic formation differences of the volatile pyrazinones.


Subject(s)
Alanine , Asparagine , Maillard Reaction , Pyrazines , Volatile Organic Compounds , Pyrazines/chemistry , Alanine/chemistry , Asparagine/chemistry , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry
14.
Foods ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611301

ABSTRACT

The objective of our study was to analyze and identify enzymatic peptides from straw mushrooms that can enhance salty taste with the aim of developing saltiness enhancement peptides to reduce salt intake and promote dietary health. We isolated taste-related peptides from the straw mushroom extract using ultrafiltration and identified them using UPLC-Q-TOF-MS/MS. The study found that the ultrafiltration fraction (500-2000 Da) of straw mushroom peptides had a saltiness enhancement effect, as revealed via subsequent E-tongue and sensory analyses. The ultrafiltration fractions (500-2000 Da) were found to contain 220 peptides, which were identified through UPLC-Q-TOF-MS/MS analysis. The interaction of these peptides with the T1R1/T1R3 receptor was also assessed. The investigation highlighted the significant involvement of Asp223, Gln243, Leu232, Asp251, and Pro254 in binding peptides from triple-enzymatically hydrolyzed straw mushrooms to T1R1/T1R3. Based on the binding energy and active site analysis, three peptides were selected for synthesis: DFNALPFK (-9.2 kcal/mol), YNEDNGIVK (-8.8 kcal/mol), and VPGGQEIKDR (-8.9 kcal/mol). Importantly, 3.2 mmol of VPGGQEIKDR increased the saltiness level of a 0.05% NaCl solution to that of a 0.15% NaCl solution. Additionally, the addition of 0.8 mmol of YNEDNGIVK to a 0.05% NaCl solution resulted in the same level of saltiness as a 0.1% NaCl solution.

15.
J Agric Food Chem ; 72(18): 10570-10578, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38652024

ABSTRACT

Amadori rearrangement products (ARPs) are gaining more attention for their potential usage in the food flavor industry. Peptide-ARPs have been studied, but pyrazinones that were theoretically found in the Maillard reaction (MR) have not been reported to be formed from small peptide-ARPs. This study found four pyrazinones: 1-methyl-, 1,5-dimethyl-, 1,6-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones in both MR and ARP systems. It was the first time 1-methyl-2(1H)-pyrazinone was reported, along with 1,5-dimethyl- and 1,5,6-trimethyl-2(1H)-pyrazinones being purified and analyzed by nuclear magnetic resonance for the first time. The primary formation routes of the pyrazinones were also proven as the reaction between diglycine and α-dicarbonyls, including glyoxal, methylglyoxal, and diacetyl. The pyrazinones, especially 1,5-dimethyl-2(1H)-pyrazinone, have strong fluorescence intensity, which may be the reason for the increase of fluorescence intensity in MR besides α-dicarbonyls. Cytotoxicity analysis showed that both Gly-/Digly-/Trigly-ARP and the three pyrazinones [1-methyl-, 1,5-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones] showed no prominent cytotoxicity in the HepG2 cell line below 100 µg/mL, further suggesting that ARPs or pyrazinones could be used as flavor additives in the future. Further research should be conducted to investigate pyrazinones in various systems, especially the peptide-ARPs, which are ubiquitous in real food systems.


Subject(s)
Maillard Reaction , Pyrazines , Pyrazines/chemistry , Humans , Flavoring Agents/chemistry , Volatile Organic Compounds/chemistry , Peptides/chemistry , Glyoxal/chemistry
16.
J Pharm Biomed Anal ; 244: 116105, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38552420

ABSTRACT

BACKGROUND: Actinidia arguta leaves (AAL) are traditionally consumed as a vegetable and as tea in folk China and Korea. Previous studies have reported the anti-diabetic effect of AAL, but its bioactive components and mechanism of action are still unclear. AIM OF THE STUDY: This study aims to identify the hypoglycemic active components of AAL by combining serum pharmacochemistry and network pharmacology and to elucidate its possible mechanism of action. METHODS: Firstly, the effective components in mice serum samples were characterized by UPLC-Q/TOF-MSE. Furthermore, based on these active ingredients, network pharmacology analysis was performed to establish an "H-C-T-P-D" interaction network and reveal possible biological mechanisms. Finally, the affinity between serum AAL components and the main proteins in the important pathways above was investigated through molecular docking analysis. RESULTS: Serum pharmacochemistry analysis showed that 69 compounds in the serum samples were identified, including 23 prototypes and 46 metabolites. The metabolic reactions mainly included deglycosylation, dehydration, hydrogenation, methylation, acetylation, glucuronidation, and sulfation. Network pharmacology analysis showed that the key components quercetin, pinoresinol diglucoside, and 5-O-trans-p-coumaroyl quinic acid butyl ester mainly acted on the core targets PTGS2, HRAS, RELA, PRKCA, and BCL2 targets and through the PI3K-Akt signaling pathway, endocrine resistance, and MAPK signaling pathway to exert a hypoglycemic effect. Likewise, molecular docking results showed that the three potential active ingredients had good binding effects on the five key targets. CONCLUSION: This study provides a basis for elucidating the pharmacodynamic substance basis of AA against T2DM and further exploring the mechanism of action.


Subject(s)
Actinidia , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Molecular Docking Simulation , Network Pharmacology , Plant Extracts , Plant Leaves , Actinidia/chemistry , Plant Leaves/chemistry , Animals , Mice , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Chromatography, High Pressure Liquid/methods , Signal Transduction/drug effects
17.
Food Res Int ; 181: 114075, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448093

ABSTRACT

Directional and rapid formation of the Amadori rearrangement product (ARP) from the glutamic acid and xylose was achieved through intermittent microwave heating. The yield of ARP reached 58.09 % by subjecting the system to intermittent microwave heating at a power density of 10 W/g for 14 min. Dehydration rate and microwave effects were found to be key factors to optimize the conditions for directional and rapid preparation of the ARP. Through a comprehensive analysis of the ARP degradation and further browning under both conductive and microwave thermal processing, it was observed that microwave processing significantly accelerated the browning degree of systems, leading to a tenfold reduction in the heating time required for browning. This research presented a promising avenue for the development of novel and expedited methods for the production of ARP and highlighted the potential of ARP in enhancing color quality in fast-cooking applications utilizing microwave.


Subject(s)
Glutamic Acid , Heating , Microwaves , Xylose , Cooking
18.
Food Res Int ; 181: 114116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448100

ABSTRACT

Cantonese soy sauce (CSS) is an important Chinese condiment due to its distinctive flavor. Microorganisms play a significant role in the flavor formation of CSS during fermentation. However, the correlation between microbes and flavor compounds as well as the potential fermentation mechanism remained poorly uncovered. Here we revealed the dynamic changes of microbial structure and characteristics metabolites as well as their correlation of CSS during the fermentation process. Metagenomics sequencing analysis showed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Aspergillus oryzae, Lactiplantibacillus plantarum, Weissella cibaria were top six dominant species from day 0 to day 120. Sixty compounds were either positively or tentatively identified through untargeted metabolomics profile and they were 27 peptides, amino acids and derivatives, 8 carbohydrates and conjugates, 14 organic acids and derivatives, 5 amide compounds, 3 flavonoids and 3 nucleosides. Spearman correlation coefficient indicated that Tetragenococcus halophilus, Zygosaccharomyces rouxii, Pediococcus pentosaceus and Aspergillus oryzae were significantly related with the formation of taste amino acids and derivatives, peptides and functional substances. Additionally, the metabolisms of flavor amino acids including 13 main free amino acids were also profiled. These results provided valuable information for the production practice in the soy sauce industry.


Subject(s)
Aspergillus oryzae , Enterococcaceae , Soy Foods , Fermentation , Amino Acids , Aspergillus oryzae/genetics , Peptides
19.
J Agric Food Chem ; 72(11): 5878-5886, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38462902

ABSTRACT

The involvement of exogenous alanine was observed to inhibit the generation of 2-furfural during the thermal degradation of the Amadori rearrangement product (ARP). To clarify the reason for the reduced yield of 2-furfural triggered by exogenous alanine, the evolution of the precursors of 2-furfural formed in the ARP model and ARP-alanine model was investigated, and a model including ARP and 15N-labeled alanine was used to differentiate the role of endogenous and exogenous alanine in the degradation of ARP. It was found that the condensation between ARP and 3-deoxyxylosone could occur during thermal treatment. Nevertheless, the interaction of ARP with 3-deoxyxylosone exhibited an accelerated pace in the presence of exogenous alanine. In this way, exogenous alanine blocked the recovery of endogenous alanine while simultaneously enhancing the consumption of ARP and 3-deoxyxylosone during the Maillard reaction. Hence, the yield of 2-furfural was diminished with the interference of exogenous alanine. Furthermore, the promotion of the reaction between ARP and deoxyxylosone induced by exogenous alanine blocked their retro-aldolization reaction to short-chain α-dicarbonyls (α-DCs) and consequently resulted in a lack of pyrazine formation during the ARP degradation. The present study provided a feasible method for the controlled formation of 2-furfural during the thermal treatment of ARP derived from alanine.


Subject(s)
Alanine , Furaldehyde , Maillard Reaction
20.
J Agric Food Chem ; 72(13): 7344-7353, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38502793

ABSTRACT

Amadori rearrangement products of asparagine with glucose (Asn-Glc-ARP) were first prepared through Maillard model reactions and identified via liquid chromatography-mass spectroscopy. With the study on the effect of the reaction temperature, pH values, and reaction time, the ideal reaction condition for accumulation of Asn-Glc-ARP was determined at 100 °C for 40 min under pH 7. Asparagine (Asn) was prone to degrade from Asn-Glc-ARP in alkaline pH values within a lower temperature range, while in an acidic environment with high temperatures, deamidation of Asn-Glc-ARP to Asp-Glc-ARP (Amadori rearrangement products of aspartic acid with glucose) was displayed as the dominant pathway. The deamidation reaction on the side chain of the amide group took place at Asn-Glc-ARP and transferred it into the hydroxyl group, forming Asp-Glc-ARP at the end. Considering that lyophilization as pretreatment led to limited water activity, a single aspartic acid was not deamidated from Asn directly nor did it degrade from Asp-Glc-ARP even at 120 °C. The degradation of Asn-Glc-ARP through tandem mass spectrometry (MS/MS) analysis showed the obvious fragment ion at m/z 211, indicating that the stable oxonium ion formed during fragmentation. The structure of Asn-Glc-ARP was proposed as 1-deoxy-1-l-asparagino-d-fructose after separation and purification. Also, the content of Asn-Glc-ARP within dry jujube fruit (HeTianYuZao) was quantitated as high as 8.1 ± 0.5 mg/g.


Subject(s)
Asparagine , Glucose , Plant Extracts , Ziziphus , Asparagine/chemistry , Glucose/chemistry , Tandem Mass Spectrometry , Maillard Reaction , Aspartic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...