Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Medicine (Baltimore) ; 103(9): e37401, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38428880

ABSTRACT

RATIONALE: Amyotrophic lateral sclerosis (ALS) poses a significant clinical challenge due to its rapid progression and limited treatment options, often leading to deadly outcomes. Looking for effective therapeutic interventions is critical to improve patient outcomes in ALS. PATIENT CONCERNS: The patient, a 75-year-old East Asian male, manifested an insidious onset of right-hand weakness advancing with dysarthria. Comprehensive Next-generation sequencing analysis identified variants in specific genes consistent with ALS diagnosis. DIAGNOSES: ALS diagnosis is based on El Escorial diagnostic criteria. INTERVENTIONS: This study introduces a novel therapeutic approach using artificial intelligence phenotypic response surface (AI-PRS) technology to customize personalized drug-dose combinations for ALS. The patient underwent a series of phases of AI-PRS-assisted trials, initially incorporating a 4-drug combination of Ibudilast, Riluzole, Tamoxifen, and Ropinirole. Biomarkers and regular clinical assessments, including nerve conduction velocity, F-wave, H-reflex, electromyography, and motor unit action potential, were monitored to comprehensively evaluate treatment efficacy. OUTCOMES: Neurophysiological assessments supported the ALS diagnosis and revealed the co-presence of diabetic polyneuropathy. Hypotension during the trial necessitated an adaptation to a 2-drug combinational trial (ibudilast and riluzole). Disease progression assessment shifted exclusively to clinical tests of muscle strength, aligning with the patient's well-being. LESSONS: The study raises the significance of personalized therapeutic strategies in ALS by AI-PRS. It also emphasizes the adaptability of interventions based on patient-specific responses. The encountered hypotension incident highlights the importance of attentive monitoring and personalized adjustments in treatment plans. The described therapy using AI-PRS, offering personalized drug-dose combinations technology is a potential approach in treating ALS. The promising outcomes warrant further evaluation in clinical trials for searching a personalized, more effective combinational treatment for ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Hypotension , Humans , Male , Aged , Riluzole/therapeutic use , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Artificial Intelligence , Treatment Outcome , Hypotension/drug therapy
4.
medRxiv ; 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37397983

ABSTRACT

Background: Inter- and intra-individual variability in tacrolimus dose requirements mandates empirical clinician-titrated dosing that frequently results in deviation from a narrow target range. Improved methods to individually dose tacrolimus are needed. Our objective was to determine whether a quantitative, dynamically-customized, phenotypic-outcome-guided dosing method termed Phenotypic Personalized Medicine (PPM) would improve target drug trough maintenance. Methods: In a single-center, randomized, pragmatic clinical trial ( NCT03527238 ), 62 adults were screened, enrolled, and randomized prior to liver transplantation 1:1 to standard-of-care (SOC) clinician-determined or PPM-guided dosing of tacrolimus. The primary outcome measure was percent days with large (>2 ng/mL) deviation from target range from transplant to discharge. Secondary outcomes included percent days outside-of-target-range and mean area-under-the-curve (AUC) outside-of-target-range per day. Safety measures included rejection, graft failure, death, infection, nephrotoxicity, or neurotoxicity. Results: 56 (29 SOC, 27 PPM) patients completed the study. The primary outcome measure was found to be significantly different between the two groups. Patients in the SOC group had a mean of 38.4% of post-transplant days with large deviations from target range; the PPM group had 24.3% of post-transplant days with large deviations; (difference -14.1%, 95% CI: -26.7 to -1.5 %, P=0.029). No significant differences were found in the secondary outcomes. In post-hoc analysis, the SOC group had a 50% longer median length-of-stay than the PPM group [15 days (Q1-Q3: 11-20) versus 10 days (Q1-Q3: 8.5-12); difference 5 days, 95% CI: 2-8 days, P=0.0026]. Conclusions: PPM guided tacrolimus dosing leads to better drug level maintenance than SOC. The PPM approach leads to actionable dosing recommendations on a day-to-day basis. Lay Summary: In a study on 62 adults who underwent liver transplantation, researchers investigated whether a new dosing method called Phenotypic Personalized Medicine (PPM) would improve daily dosing of the immunosuppression drug tacrolimus. They found that PPM guided tacrolimus dosing leads to better drug level maintenance than the standard-of-care clinician-determined dosing. This means that the PPM approach leads to actionable dosing recommendations on a day-to-day basis and can help improve patient outcomes.

5.
Genes (Basel) ; 14(7)2023 06 23.
Article in English | MEDLINE | ID: mdl-37510231

ABSTRACT

Pattern hair loss can occur in both men and women, and the underlying molecular mechanisms have been continuously studied in recent years. Male androgenetic alopecia (M-AGA), also termed male pattern hair loss, is the most common type of hair loss in men. M-AGA is considered an androgen-dependent trait with a background of genetic predisposition. The interplay between genetic and non-genetic factors leads to the phenotype of follicular miniaturization. Although this similar pattern of phenotypic miniaturization can also be found in female pattern hair loss (FPHL), the corresponding genetic factors in M-AGA do not account for the phenotype in FPHL, indicating that there are different genes contributing to FPHL. Therefore, the role of genetic factors in FPHL is still uncertain. Understanding the genetic mechanism that causes FPHL is crucial for the future development of personalized treatment strategies. This review aims to highlight the differences in the ethnic prevalence and genetic background of FPHL, as well as the current genetic research progress in nutrition, Wnt signaling, and sex hormones related to FPHL.


Subject(s)
Alopecia , Androgens , Male , Female , Humans , Alopecia/genetics , Genetic Predisposition to Disease , Phenotype , Wnt Signaling Pathway/genetics
6.
Genes (Basel) ; 14(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37510267

ABSTRACT

Alopecia areata (AA) is a chronic, non-scarring, immune-mediated skin disease that affects approximately 0.5-2% of the global population. The etiology of AA is complex and involves genetic and environmental factors, with significant advancements in genetic research occurring in recent years. In addition to well-known genes such as PTPN22, CTLA4, and IL2, which have been widely supported as being associated with AA, an increasing number of specific gene-related loci have been discovered through advances in genetic research. For instance, gene analysis of microRNAs can reveal the critical role of miRNAs in regulating gene expression, aiding in the understanding of cellular and organismal functional regulatory mechanisms. Furthermore, numerous studies have confirmed the existence of correlations between AA and other immune-related diseases. Examples include hyperthyroidism and rheumatoid arthritis. By understanding the interrelationships between AA and other immune diseases, we can further comprehend potential shared genetic foundations or pathogenic mechanisms among different diseases. Genetic research plays a crucial role in unraveling the pathogenesis of AA, as the identification of genetic variations associated with AA can assist in formulating more effective and targeted treatment strategies.


Subject(s)
Alopecia Areata , Humans , Alopecia Areata/genetics , Genetic Predisposition to Disease , Alleles , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
7.
Toxins (Basel) ; 15(7)2023 07 20.
Article in English | MEDLINE | ID: mdl-37505734

ABSTRACT

Bisphenol A (BPA)-based materials are used in the manufacturing of hemodialyzers, including their polycarbonate (PC) housings and polysulfone (PS) membranes. As concerns for BPA's adverse health effects rise, the regulation on BPA exposure is becoming more rigorous. Therefore, BPA alternatives, such as Bisphenol S (BPS), are increasingly used. It is important to understand the patient risk of BPA and BPS exposure through dialyzer use during hemodialysis. Here, we report the bisphenol levels in extractables and leachables obtained from eight dialyzers currently on the market, including high-flux and medium cut-off membranes. A targeted liquid chromatography-mass spectrometry strategy utilizing stable isotope-labeled internal standards provided reliable data for quantitation with the standard addition method. BPA ranging from 0.43 to 32.82 µg/device and BPS ranging from 0.02 to 2.51 µg/device were detected in dialyzers made with BPA- and BPS-containing materials, except for the novel FX CorAL 120 dialyzer. BPA and BPS were also not detected in bloodline controls and cellulose-based membranes. Based on the currently established tolerable intake (6 µg/kg/day), the resulting margin of safety indicates that adverse effects are unlikely to occur in hemodialysis patients exposed to BPA and BPS quantified herein. With increasing availability of new data and information about the toxicity of BPA and BPS, the patient safety limits of BPA and BPS in those dialyzers may need a re-evaluation in the future.


Subject(s)
Kidneys, Artificial , Renal Dialysis , Phenols/analysis
8.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239825

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory decline and cognitive impairment. Research on biomarkers can aid in early diagnosis, monitoring disease progression, evaluating treatment efficacy, and advancing fundamental research. We conducted a cross-sectional longitudinal study to see if there is an association between AD patients and age-matched healthy controls for their physiologic skin characteristics, such as pH, hydration, transepidermal water loss (TEWL), elasticity, microcirculation, and ApoE genotyping. The study used the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating-Sum of the Boxes (CDR-SB) scales as references to quantify the presence of disease, if any. Our findings demonstrate that AD patients have a dominantly neutral pH, greater skin hydration, and less elasticity compared to the control subjects. At baseline, the tortuous capillary percentage negatively correlated with MMSE scores in AD patients. However, AD patients who carry the ApoE E4 allele and exhibit a high percentage of tortuous capillaries and capillary tortuous numbers have shown better treatment outcomes at six months. Therefore, we believe that physiologic skin testing is a rapid and effective way to screen, monitor progression, and ultimately guide the most appropriate treatment for AD patients.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Longitudinal Studies , Cross-Sectional Studies , Treatment Outcome , Apolipoproteins E/genetics , Cognitive Dysfunction/psychology , Biomarkers , Disease Progression , Neuropsychological Tests
9.
Emerg Microbes Infect ; 12(1): 2187247, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36872899

ABSTRACT

In preclinical studies, a new antituberculosis drug regimen markedly reduced the time required to achieve relapse-free cure. This study aimed to preliminarily evaluate the efficacy and safety of this four-month regimen, consisting of clofazimine, prothionamide, pyrazinamide and ethambutol, with a standard six-month regimen in patients with drug-susceptible tuberculosis. An open-label pilot randomized clinical trial was conducted among the patients with newly diagnosed bacteriologically-confirmed pulmonary tuberculosis. The primary efficacy end-point was sputum culture negative conversion. Totally, 93 patients were included in the modified intention-to-treat population. The rates of sputum culture conversion were 65.2% (30/46) and 87.2% (41/47) for short-course and standard regimen group, respectively. There was no difference on two-month culture conversion rates, time to culture conversion, nor early bactericidal activity (P > 0.05). However, patients on short-course regimen were observed with lower rates of radiological improvement or recovery and sustained treatment success, which was mainly attributed to higher percent of patients permanently changed assigned regimen (32.1% vs. 12.3%, P = 0.012). The main cause for it was drug-induced hepatitis (16/17). Although lowering the dose of prothionamide was approved, the alternative option of changing assigned regimen was chosen in this study. While in per-protocol population, sputum culture conversion rates were 87.0% (20/23) and 94.4% (34/36) for the respective groups. Overall, the short-course regimen appeared to have inferior efficacy and higher incidence of hepatitis but desired efficacy in per-protocol population. It provides the first proof-of-concept in humans of the capacity of the short-course approach to identify drug regimens that can shorten the treatment time for tuberculosis.


Subject(s)
Clofazimine , Tuberculosis , Humans , Clofazimine/adverse effects , Prothionamide , Drug Therapy, Combination , Antitubercular Agents/adverse effects , Tuberculosis/drug therapy , Pyrazinamide/adverse effects , Treatment Outcome , Isoniazid
11.
Insights Imaging ; 14(1): 14, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36690870

ABSTRACT

PURPOSE: To investigate the generalizability of transfer learning (TL) of automated tumor segmentation from cervical cancers toward a universal model for cervical and uterine malignancies in diffusion-weighted magnetic resonance imaging (DWI). METHODS: In this retrospective multicenter study, we analyzed pelvic DWI data from 169 and 320 patients with cervical and uterine malignancies and divided them into the training (144 and 256) and testing (25 and 64) datasets, respectively. A pretrained model was established using DeepLab V3 + from the cervical cancer dataset, followed by TL experiments adjusting the training data sizes and fine-tuning layers. The model performance was evaluated using the dice similarity coefficient (DSC). RESULTS: In predicting tumor segmentation for all cervical and uterine malignancies, TL models improved the DSCs from the pretrained cervical model (DSC 0.43) when adding 5, 13, 26, and 51 uterine cases for training (DSC improved from 0.57, 0.62, 0.68, 0.70, p < 0.001). Following the crossover at adding 128 cases (DSC 0.71), the model trained by combining data from adding all the 256 patients exhibited the highest DSCs for the combined cervical and uterine datasets (DSC 0.81) and cervical only dataset (DSC 0.91). CONCLUSIONS: TL may improve the generalizability of automated tumor segmentation of DWI from a specific cancer type toward multiple types of uterine malignancies especially in limited case numbers.

12.
Nutrients ; 16(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38201907

ABSTRACT

The purpose of this study was to investigate genetic factors associated with metabolic syndrome (MetS) by conducting a large-scale genome-wide association study (GWAS) in Taiwan, addressing the limited data on Asian populations compared to Western populations. Using data from the Taiwan Biobank, comprehensive clinical and genetic information from 107,230 Taiwanese individuals was analyzed. Genotyping data from the TWB1.0 and TWB2.0 chips, including over 650,000 single nucleotide polymorphisms (SNPs), were utilized. Genotype imputation using the 1000 Genomes Project was performed, resulting in more than 9 million SNPs. MetS was defined based on a modified version of the Adult Treatment Panel III criteria. Among all participants (mean age: 50 years), 23% met the MetS definition. GWAS analysis identified 549 SNPs significantly associated with MetS, collectively mapping to 10 genomic risk loci. Notable risk loci included rs1004558, rs3812316, rs326, rs4486200, rs2954038, rs10830963, rs662799, rs62033400, rs183130, and rs34342646. Gene-set analysis revealed 22 associated genes: CETP, LPL, APOA5, SIK3, ZPR1, APOC1, BUD13, MLXIPL, TOMM40, GCK, YKT6, RPS6KB1, FTO, VMP1, TUBD1, BCL7B, C19orf80 (ANGPTL8), SIDT2, SENP7, PAFAH1B2, DOCK6, and FOXA2. This study identified genomic risk loci for MetS in a large Taiwanese population through a comprehensive GWAS approach. These associations provide novel insights into the genetic basis of MetS and hold promise for the potential discovery of clinical biomarkers.


Subject(s)
East Asian People , Genome-Wide Association Study , Metabolic Syndrome , Adult , Humans , Middle Aged , Genotype , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , East Asian People/genetics
13.
Am J Cancer Res ; 12(11): 5325-5341, 2022.
Article in English | MEDLINE | ID: mdl-36504889

ABSTRACT

Aberrant CpG-island methylation affects ovarian cancer progression. The promotor methylation changes at tumor suppressive genes in ovarian cancer stromal progenitor cells (OCSPCs) and epithelial ovarian cancer (EOC) tissues and their clinical implication remains unexplored. We systemically analyzed the promoter methylation status of 40 tumor suppressor genes (TSGs) associated with cancer in paired epithelial-like and mesenchymal-like OCSPCs and ovarian cancer cells by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The effect of DNA methylation on gene expression was confirmed using qRT-PCR. The differential frequencies of TSGs' promoter methylation among matched epithelial-like or mesenchymal-like OCSPCs from tissues and ascites and ovarian cancer tissues were further validated in cancer tissues and correlated with clinicopathological features and survival outcomes of patients. According to the promoter methylation frequencies of the 40 TSGs, promoters of RASSF1A were the only significantly hypomethylated in epithelial-like OCSPCs from tissues than those from ascites and bulk tumor cells (0% vs 38% vs 45%, P=0.039 by Fisher's exact test). The most frequencies at promotor hypermethylation of TSGs in mesenchymal-like OCSPCs from ascites which processed aggressiveness were CDKN2B (73%) followed by CCND2 (45%) and RASSF1A (45%). Forty-three percent (47/110) of RASSF1A and 45% of CCND2 were validated as a frequently hypermethylated gene in an independent set of 110 EOC tissues in contrast to none (0/60) and 12% (10/60) of benign ovarian cysts (both P<0.001). Functional experiments revealed overexpression of CCND2 or CDKN2B in MSc-OCSPCs decreases EMT, invasion, and spheroid formation in EOC, and abolishes DNMT1 and COL6A3 expression. However, for the expected 5-year overall survival (OS) for patients with methylated RASSF1A, CCND2, and CDKN2B, only RASSF1A was significantly worse than those without methylated RASSF1A (56% vs 80%, p=0.022). Taken together, overexpression of CCND2 and CDKN2B decreased the aggressiveness of mesenchymal-like OCSPCs from ascites which may represent a potential therapeutic target for EOC. Promotor hypomethylation at RASSF1A in OCSPCs from EOC tissues and changes to hypermethylation of EOC and OCSPCs from ascites could predict poor survival outcomes for EOC patients compared to without those changes of CCND2 and CDKN2B.

14.
Am J Cancer Res ; 12(4): 1686-1706, 2022.
Article in English | MEDLINE | ID: mdl-35530273

ABSTRACT

Ovarian clear cell cancer stem-like/spheroid cells (OCCCSCs) were associated with recurrence, metastasis, and chemoresistance in ovarian clear cell carcinoma (OCCC). We evaluated the anti-tumor effects of 5-aza-2-deoxycytidine (5-aza-dC) combined with everolimus (RAD001) on human OCCC. We investigated parental OCCCSCs and paclitaxel-resistant cell lines derived from OCCCSCs in vitro and in vivo. A Western blot analysis showed that the 5-aza-dC and RAD001 combination therapy was associated with the COL6A3-AKT-mTOR pathway. The OCCCSCs expressed high levels of stemness markers: CD117, ALDH1, NANOG, OCT4, and CD133. The 5-aza-dC and RAD001 combination inhibited proliferation and survival with up to 100-fold more potency in OCCCSCs compared to OCCC cells. This combination showed significant anti-tumor activity; it preferentially diminished OCCCSC stemness levels and spheroid numbers in vitro. Limiting dilution assays showed that OCCCSCs possessed tumor-initiating capacity. The 5-aza-dC and RAD001 combination significantly enhanced the inhibition of tumor growth compared to the 5-aza-dC or RAD001 alone. OCCCSCs showed higher expression levels of COL6A3, phospho-AKT, phospho-mTOR, and phospho-Rictor compared to OCCCs. Silencing COL6A3 or abolishing the phospho-AKT-mTOR-Rictor pathway with 5-aza-dC and RAD001 treatment further enhanced OCCCSC apoptosis and reduced OCCCSC stemness. In conclusion, 5-aza-dC combined with RAD001 effectively controlled OCCC and OCCCSC growth by inhibiting the COL6A3-AKT-mTOR pathway.

15.
Environ Health ; 21(1): 44, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35461256

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is increasing, with heavy metal exposure an important risk factor. Additionally, the antioxidant folic acid has been studied for reducing blood arsenic levels and related tissue damage. Therefore, we explored the association and mediation effects among various heavy metal levels in blood, plasma folate, other CKD risk factors, and impaired estimated glomerular filtration rate (eGFR). METHODS: We constructed a community-based cross-sectional study from the Human Biomonitoring and Environmental Health Program in central Taiwan. A total of 1643 participants had lived locally for > 5 years, > 40 years old, and completely received health examinations and biospecimen collections. Impaired eGFR was defined as one single eGFR < 60 mL/min/1.73 m2. Plasma folate and metal levels in blood were determined, as well as urinary 8-hydroxy-2'-deoxyguanosine as an oxidative stress marker. Generalized weighted quantile sum (WQS) regression analysis was used to calculate a WQS score, reflecting overall body-burden of multiple metals (arsenic, cadmium, chromium, nickel, and lead) in blood. RESULTS: Impaired eGFR was identified in 225 participants. Participants with high WQS scores had increased risk of impaired eGFR (odds ratio = 1.67; 95% confidence interval [CI]: 1.34, 2.07). Of five metals, arsenic, lead, and cadmium were weighted highly in impaired eGFR. Participants with high WQS and folate insufficiency (< 6 ng/mL) had 2.38-fold risk of impaired eGFR compared to those with low WQS and high folate (≥6 ng/mL) (95% CI: 1.55, 5.17). Similar increased 4.16-fold risk of impaired eGFR was shown in participants with high WQS and uric acid levels (95% CI: 2.63, 6.58). However, there were no significant WQS-folate (p = 0.87) or WQS-uric acid (p = 0.38) interactions on impaired eGFR risk. As a mediator, uric acid contributed 24% of the association between WQS score and impaired eGFR risk (p < 0.0001). However, no mediation effect of plasma folate was observed. CONCLUSION: WQS analysis could be applied to evaluate the joint effects of multiple metals exposure. High WQS scores may influence impaired eGFR risk through increased uric acid levels. A large-scale and prospective cohort study is necessary to validate these results and demonstrate any causal relationship.


Subject(s)
Arsenic , Metals, Heavy , Renal Insufficiency, Chronic , Adult , Cadmium , Cross-Sectional Studies , Female , Folic Acid , Glomerular Filtration Rate , Humans , Male , Mediation Analysis , Prospective Studies , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/epidemiology , Taiwan/epidemiology , Uric Acid
16.
Micromachines (Basel) ; 13(4)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35457898

ABSTRACT

An effective System-on-Chip (SoC) for smart Quality-of-Service (QoS) management over a virtual local area network (LAN) is presented in this study. The SoC is implemented by field programmable gate array (FPGA) for accelerating the delivery quality prediction for a service. The quality prediction is carried out by the general regression neural network (GRNN) algorithm based on a time-varying profile consisting of the past delivery records of the service. A novel record replacement algorithm is presented to update the profile, so that the bandwidth usage of the service can be effectively tracked by GRNN. Experimental results show that the SoC provides self-aware QoS management with low computation costs for applications over virtual LAN.

17.
Cancers (Basel) ; 14(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35406519

ABSTRACT

This large-scale study aimed to determine the long-term influences of potential prognostic predictors and progression-free interval (PFI) criteria for grading platinum-sensitivity in ovarian clear cell carcinoma (OCCC). We retrospectively reviewed the medical records of OCCC patients presenting at nine tertiary centres (1995−2015), and evaluated patient characteristics, therapeutic factors, clinical outcomes, and hazard ratios for disease progression and death. We enrolled 536 patients (median follow-up, 36.6 months) and developed newly defined distributions of PFIs (seven and 14 months) for grading platinum sensitivity. In the multivariate model, preoperative CA125 levels and chemo-response independently predicted early-stage progression-free survival (PFS) risk. Post-progression cytoreduction correlated with reduced mortality risk. No unfavourable outcomes were observed with respect to coexisting endometriosis, fertility-sparing strategies, or platinum-based regimens. A PFI of <7 months, the strongest predictor of both post-progression mortality and second relapse risks, correlated with chemo-resistance, advanced tumour stage, and shortened post-progression survival. Chemotherapy regimens commonly used in front-line or relapse settings were limited in improving prognoses, especially in the advanced-stage cohort. Clinical trials of novel targeted agents and/or innovative biomarkers for chemoresistance should be comprehensively investigated and offered early to advanced-stage patients or those with OCCC progression occurring within seven months after receiving chemotherapy.

18.
J Biomed Mater Res B Appl Biomater ; 110(6): 1335-1343, 2022 06.
Article in English | MEDLINE | ID: mdl-34951744

ABSTRACT

Anticoagulation therapy is widely used to reduce clotting during hemodialysis (HD), but may cause adverse effects in end-stage kidney disease patients. A new hemodialyzer with a membrane modified by surface modifying molecule was developed to improve hemocompatibility that aimed to reduce the need for anticoagulation during dialysis treatments. We compared membrane surface characteristics and in vitro hemocompatibility of the new hemodialyzer to the standard polysulfone (PSF) hemodialyzer membrane. Scanning electron microscopy, contact angle measurement (68° ± 3° test vs. 41.6° ± 6° control), and X-ray photoelectron spectrometry measurement for fluorine atomic % (7.4% ± 0.4% test vs. not detectable control), showed that the membrane surface was modified with surface modifying macromolecule (SMM1) but maintained membrane structure and surface hydrophilicity. Zeta potential of the blood-contacting surface showed that the absolute surface charge was reduced at neutral pH (-3.3 mV ± 1.1 mV test vs. -15.6 mV ± 1.0 mV control). Platelet count reduction was significantly less for the SMM1-modified dialyzer (40.88% ± 21.89%) compared to the standard PSF dialyzer (62.62% ± 34.13%), along with Platelet Factor 4 (1824.10 ng/ml ± 436.26 ng/ml test vs. 2479.00 ng/ml ± 852.96 ng/ml control). These studies demonstrate the successful incorporation of SMM1 into the new hemodialyzer with the expected results. Our in vitro experiments indicate that the SMM1-modified hemodialyzers could improve hemocompatibility compared to standard PSF hemodialyzers and have the potential to minimize the patient's anticoagulant requirements during HD. Additional research with SMM1 additives incorporated into the entire dialysis circuit and use in a clinical settings are required to confirm these promising findings.


Subject(s)
Kidneys, Artificial , Humans , Membranes, Artificial , Polymers/chemistry , Renal Dialysis , Sulfones/chemistry
19.
Trends Genet ; 37(11): 951-954, 2021 11.
Article in English | MEDLINE | ID: mdl-34503867

ABSTRACT

Genetic discrimination (GD) is the differential or unfair profiling of an individual on the basis of genetic data. This article summarizes the actions of the Genetic Discrimination Observatory (GDO) in addressing GD and recent developments in GD since late 2020. It shows how GD can take many forms in today's rapidly evolving society.

SELECTION OF CITATIONS
SEARCH DETAIL
...