Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38765979

ABSTRACT

The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits these diverse axonal responses, beyond engaging the attractive receptor DCC and repulsive receptors of the UNC5 family, remains elusive. Here we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C, and that deletion of murine Trim9 alters both attractive and repulsive responses to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in surface levels of DCC and total levels of UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of netrin-1. We investigate membrane dynamics of the UNC5C receptor using pH-mScarlet fused to the extracellular domain of UNC5C. Minutes after netrin addition, levels of UNC5C at the plasma membrane drop in a TRIM9-independent fashion, however TRIM9 regulated the mobility of UNC5C in the plasma membrane in the absence of netrin-1. Together this work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.

2.
J Food Drug Anal ; 31(1): 32-54, 2023 03 15.
Article in English | MEDLINE | ID: mdl-37224554

ABSTRACT

Erinacines derived from Hericium erinaceus have been shown to possess various health benefits including neuroprotective effect against neurodegenerative diseases, yet the underlying mechanism remains unknown. Here we found that erinacine S enhances neurite outgrowth in a cell autonomous fashion. It promotes post-injury axon regeneration of PNS neurons and enhances regeneration on inhibitory substrates of CNS neurons. Using RNA-seq and bioinformatic analyses, erinacine S was found to cause the accumulation of neurosteroids in neurons. ELISA and neurosteroidogenesis inhibitor assays were performed to validate this effect. This research uncovers a previously unknown effect of erinacine S on raising the level of neurosteroids.


Subject(s)
Axons , Neurosteroids , Nerve Regeneration , Mycelium , Neurons
3.
Curr Biol ; 33(3): R98-R100, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36750031

ABSTRACT

The shape of a neuron changes dramatically during development. New work reports a novel septin cytoskeleton network that is important in establishing proper neuronal morphology.


Subject(s)
Actins , Septins , Actins/metabolism , Septins/metabolism , Cytoskeleton/metabolism , Microtubules/metabolism , Actin Cytoskeleton/metabolism
4.
Mol Biol Cell ; 32(4): 314-330, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33378226

ABSTRACT

TRIM9 and TRIM67 are neuronally enriched E3 ubiquitin ligases essential for appropriate morphogenesis of cortical and hippocampal neurons and fidelitous responses to the axon guidance cue netrin-1. Deletion of murine Trim9 or Trim67 results in neuroanatomical defects and striking behavioral deficits, particularly in spatial learning and memory. TRIM9 and TRIM67 interact with cytoskeletal and exocytic proteins, but the full interactome is not known. Here we performed the unbiased proximity-dependent biotin identification (BioID) approach to define TRIM9 and TRIM67 protein-protein proximity network in developing cortical neurons and identified putative neuronal TRIM interaction partners. Candidates included cytoskeletal regulators, cytosolic protein transporters, exocytosis and endocytosis regulators, and proteins necessary for synaptic regulation. A subset of high-priority candidates was validated, including Myo16, Coro1A, MAP1B, ExoC1, GRIP1, PRG-1, and KIF1A. For a subset of validated candidates, we utilized total internal reflection fluorescence microscopy to demonstrate dynamic colocalization with TRIM proteins at the axonal periphery, including at the tips of filopodia. Further analysis demonstrated that the RNA interference-based knockdown of the unconventional myosin Myo16 in cortical neurons altered growth cone filopodia density and axonal branching patterns in a TRIM9- and netrin-1-dependent manner. Future analysis of other validated candidates will likely identify novel proteins and mechanisms by which TRIM9 and TRIM67 regulate neuronal form and function. [Media: see text].


Subject(s)
Cytoskeletal Proteins/metabolism , Morphogenesis/physiology , Nerve Tissue Proteins/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Axons/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/physiology , Female , Growth Cones/metabolism , Hippocampus/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Morphogenesis/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neurons/metabolism , Protein Interaction Mapping/methods , Protein Interaction Maps , Pseudopodia/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/physiology
5.
J Cell Sci ; 133(9)2020 05 14.
Article in English | MEDLINE | ID: mdl-32253322

ABSTRACT

Microtubules (MTs) are the most abundant cytoskeleton in neurons, and control multiple facets of their development. While the MT-organizing center (MTOC) in mitotic cells is typically located at the centrosome, the MTOC in neurons switches to non-centrosomal sites. A handful of cellular components have been shown to promote non-centrosomal MT (ncMT) formation in neurons, yet the regulation mechanism remains unknown. Here, we demonstrate that the small GTPase Ran is a key regulator of ncMTs in neurons. Using an optogenetic tool that enables light-induced local production of RanGTP, we demonstrate that RanGTP promotes ncMT plus-end growth along the neurite. Additionally, we discovered that actin waves drive the anterograde transport of RanGTP. Pharmacological disruption of actin waves abolishes the enrichment of RanGTP and reduces growing ncMT plus-ends at the neurite tip. These observations identify a novel regulation mechanism for ncMTs and pinpoint an indirect connection between the actin and MT cytoskeletons in neurons.


Subject(s)
Actins , Neurites , Actins/genetics , Centrosome , Microtubules , Neurons
6.
Macromol Biosci ; 18(12): e1800335, 2018 12.
Article in English | MEDLINE | ID: mdl-30408349

ABSTRACT

Surface topography has a profound effect on the development of the nervous system, such as neuronal differentiation and morphogenesis. While the interaction of neurons and the surface topography of their local environment is well characterized, the neuron-topography interaction during the regeneration process remains largely unknown. To address this question, an anisotropic surface topography resembling linear grooves made from poly(ethylene-vinyl acetate) (EVA), a soft and biocompatible polymer, using nanoimprinting, is established. It is found that neurons from both the central and peripheral nervous system can survive and grow on this grooved surface. Additionally, it is observed that axons but not dendrites specifically align with these grooves. Furthermore, it is demonstrated that neurons on the grooved surface are capable of regeneration after an on-site injury. More importantly, these injured neurons have an accelerated and enhanced regeneration. Together, the data demonstrate that this anisotropic topography guides axon growth and improves axon regeneration. This opens up the possibility to study the effect of surface topography on regenerating axons and has the potential to be developed into a medical device for treating peripheral nerve injuries.


Subject(s)
Axons/drug effects , Biocompatible Materials/pharmacology , Guided Tissue Regeneration/methods , Nerve Regeneration/drug effects , Peripheral Nerve Injuries/therapy , Polyethylenes/pharmacology , Polyvinyls/pharmacology , Animals , Anisotropy , Axons/ultrastructure , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Ganglia, Spinal/injuries , Ganglia, Spinal/surgery , Mice , Mice, Inbred C57BL , Molecular Imprinting/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nerve Regeneration/physiology , Neurites/drug effects , Neurites/ultrastructure , Peripheral Nerve Injuries/pathology , Polyethylenes/chemical synthesis , Polyethylenes/chemistry , Polyvinyls/chemical synthesis , Polyvinyls/chemistry , Primary Cell Culture , Rats , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...