Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
Virol J ; 17(1): 183, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33225958

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic has been a catastrophic burden to global healthcare systems. The fast spread of the etiologic agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the need to identify unknown coronaviruses rapidly for prompt clinical and public health decision making. Moreover, owing to the high mutation rate of RNA viruses, periodic surveillance on emerging variants of key virus components is essential for evaluating the efficacy of antiviral drugs, diagnostic assays and vaccines. These 2 knowledge gaps formed the basis of this study. In the first place, we evaluated the feasibility of characterizing coronaviruses directly from respiratory specimens. We amplified partial RdRP gene, a stable genetic marker of coronaviruses, from a collection of 57 clinical specimens positive for SARS-CoV-2 or other human coronaviruses, and sequenced the amplicons with Nanopore Flongle and MinION, the fastest and the most scalable massively-parallel sequencing platforms to-date. Partial RdRP sequences were successfully amplified and sequenced from 82.46% (47/57) of specimens, ranging from 75 to 100% by virus type, with consensus accuracy of 100% compared with Sanger sequences available (n = 40). In the second part, we further compared 19 SARS-CoV-2 RdRP sequences collected from the first to third waves of COVID-19 outbreak in Hong Kong with 22,173 genomes from GISAID EpiCoV™ database. No single nucleotide variants (SNVs) were found in our sequences, and 125 SNVs were observed from global data, with 56.8% being low-frequency (n = 1-47) missense mutations affecting the rear part of RNA polymerase. Among the 9 SNVs found on 4 conserved domains, the frequency of 15438G > T was highest (n = 34) and was predominantly found in Europe. Our data provided a glimpse into the sequence diversity of a primary antiviral drug and diagnostic target. Further studies are warranted to investigate the significance of these mutations.


Subject(s)
COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Coronavirus/genetics , Epidemiological Monitoring , Feasibility Studies , Genome, Viral/genetics , Hong Kong/epidemiology , Humans , Mutation, Missense , Nanopore Sequencing , SARS-CoV-2/isolation & purification
3.
Am J Cancer Res ; 10(9): 2919-2932, 2020.
Article in English | MEDLINE | ID: mdl-33042626

ABSTRACT

Targeted therapeutic agents such as poly (ADP-ribose) polymerases (PARP) inhibitors have emerged in treating cancers associated with germline BRCA mutations. Recently studies demonstrated the effectiveness of PARP inhibitors in treating patients with somatic BRCA mutations. Somatic mutations in 122 Chinese breast or ovarian cancer patients without BRCA, PTEN and TP53 mutations were screened using multigene sequencing panel. The five most frequent pathogenic or likely pathogenic mutated genes identified in breast cancer patients were PIK3CA (28.6%), TP53 (16.9%), MAP3K1 (14.3%), GATA3 (14.3%) and PTEN (5.2%). The five most frequently mutated genes identified in ovarian patients were TP53 (52.9%), KRAS (23.5%) and PIK3CA (11.8%), BRCA1 (5.9%) and RB1 (5.9%). Somatic PIK3CA and TP53 mutations were common events in both germline BRCA-negative breast and ovarian cancer patients. In contrast, somatic screening of BRCA mutations in BRCA-negative breast cancer patients has limited value. The results highlight the benefit of somatic testing to guide future research directions on other targeted therapies for breast and ovarian malignancies.

4.
BMC Res Notes ; 13(1): 444, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32948225

ABSTRACT

OBJECTIVE: We designed and tested a Nanopore sequencing panel for direct tuberculosis drug resistance profiling. The panel targeted 10 resistance-associated loci. We assessed the feasibility of amplifying and sequencing these loci from 23 clinical specimens with low bacillary burden. RESULTS: At least 8 loci were successfully amplified from the majority for predicting first- and second-line drug resistance (14/23, 60.87%), and the 12 specimens yielding all 10 targets were sequenced with Nanopore MinION and Illumina MiSeq. MinION sequencing data was corrected by Nanopolish and recurrent variants were filtered. A total of 67,082 bases across all consensus sequences were analyzed, with 67,019 bases called by both MinION and MiSeq as wildtype. For the 41 single nucleotide variants (SNVs) called by MiSeq with 100% variant allelic frequency (VAF), 39 (95.1%) were called by MinION. For the 22 mixed bases called by MiSeq, a SNV with the highest VAF (70%) was called by MinION. With short assay time, reasonable reagent cost as well as continuously improving sequencing chemistry and signal correction pipelines, this Nanopore method can be a viable option for direct tuberculosis drug resistance profiling in the near future.


Subject(s)
Mycobacterium tuberculosis , Nanopores , Tuberculosis , Drug Resistance , High-Throughput Nucleotide Sequencing , Humans , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy
5.
Microbiol Resour Announc ; 9(31)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32732237

ABSTRACT

We sequenced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from deep throat saliva samples of three imported cases in Hong Kong by Nanopore sequencing. Epidemiological and clinical features of these coronavirus disease 2019 (COVID-19) cases were presented for genomic epidemiology studies.

6.
Diagn Pathol ; 15(1): 41, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32340617

ABSTRACT

BACKGROUND: Diversified etiology of lower respiratory tract infection renders diagnosis challenging. The mainstay microbial culture is time-consuming and constrained by variable growth requirements. In this study, we explored the use of Nanopore sequencing as a supplementary tool to alleviate this diagnostic bottleneck. METHODS: We developed a targeted Nanopore method based on amplification of bacterial 16S rRNA gene and fungal internal transcribed spacer region. The performance was compared with routine infectious disease workups on 43 respiratory specimens. RESULTS: Nanopore successfully identified majority of microbes (47/54, 87.04%) and 7 possible pathogens not detected by routine workups, which were attributable to the content of microbiological investigations (n = 5) and negative culture (n = 2). The average sequencing time for first target reads was 7 min (1-43 min) plus 5 h of pre-sequencing preparation. CONCLUSIONS: The Nanopore method described here was rapid, economical and hypothesis-free, which might provide valuable hints to further microbiological follow-up for opportunistic pathogens missed or not detectable by conventional tests.


Subject(s)
Bacterial Infections/diagnosis , Bacteriological Techniques/methods , Lung Diseases, Fungal/diagnosis , Mycology/methods , Nanopore Sequencing/methods , Respiratory Tract Infections/diagnosis , Humans , Respiratory Tract Infections/microbiology
7.
Future Cardiol ; 15(6): 411-424, 2019 11.
Article in English | MEDLINE | ID: mdl-31691592

ABSTRACT

Aim: To explore potential utility of metagenomic sequencing for improving etiologic diagnosis of infective endocarditis (IE) caused by fastidious bacteria. Materials & methods: Plasma and heart valves of two patients, who were diagnosed with IE caused by Bartonella quintana and Propionibacterium species, were sequenced by using Illumina MiSeq and Nanopore MinION. Results: For patient 1, B. quintana was detected in the plasma pool collected 4 days before valvular replacement surgery. For patient 2, Propionibacterium sp. oral taxon 193 was detected in the plasma sample collected on hospital day 1. Nearly complete bacterial genomes (>98%) were retrieved from resected heart valves of both patients, enabling detection of antibiotic resistance-associated features. Real-time sequencing of heart valves identified both pathogens within the first 16 min of sequencing runs. Conclusion: Metagenomic sequencing may be a helpful supplement to IE diagnostic workflow, especially when conventional tests fail to yield a diagnosis.


Subject(s)
Bacteria/genetics , DNA, Bacterial/analysis , Endocarditis, Bacterial/diagnosis , Heart Valves/microbiology , Metagenomics/statistics & numerical data , Bacteria/isolation & purification , Humans , Metagenomics/methods , Polymerase Chain Reaction
8.
Cancer Genet ; 239: 22-25, 2019 11.
Article in English | MEDLINE | ID: mdl-31473470

ABSTRACT

Detection of chromosomal translocation is a key component in diagnosis and management of acute myeloid leukemia (AML). Targeted RNA next-generation sequencing (NGS) is emerging as a powerful and clinically practical tool, but it depends on expression of RNA transcript from the underlying DNA translocation. Here, we show the clinical utility of nanopore long-read sequencing in rapidly detecting DNA translocation with exact breakpoints. In a newly diagnosed patient with AML, conventional karyotyping showed translocation t(10;12)(q22;p13) but RNA NGS detected NUP98-NSD1 fusion transcripts from a known cryptic translocation t(5;11)(q35;p15). Rapid PCR-free nanopore whole-genome sequencing yielded a 26,194 bp sequencing read and revealed the t(10;12) breakpoint to be DUSP13 and GRIN2B in head-to-head configuration. This translocation was then classified as a passenger structural variant. The sequencing also yielded a 20,709 bp sequencing read and revealed the t(5;11) breakpoint of the driver NUP98-NSD1 fusion. The identified DNA breakpoints also served as markers for molecular monitoring, in addition to fusion transcript expression by digital PCR and sequence mutations by NGS. We illustrate that third-generation nanopore sequencing is a simple and low-cost workflow for DNA translocation detection.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Nanopores , Translocation, Genetic/genetics , Whole Genome Sequencing/methods , Female , High-Throughput Nucleotide Sequencing , Humans , Karyotyping , Middle Aged , Neoplasm, Residual/genetics
9.
Article in English | MEDLINE | ID: mdl-30533780

ABSTRACT

Isolation of Helicobacter cinaedi from a positive blood culture requires prolonged and stringent subculture conditions. Direct whole-genome sequencing (WGS) of a positive blood culture may provide timely treatment-associated genetic information. Here, we report a draft genome sequence of H. cinaedi compiled by direct WGS, which was 1,995,911 bp in length with 39.1% GC content.

10.
BMC Infect Dis ; 18(1): 81, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29439654

ABSTRACT

BACKGROUND: Human fecal carriage of Enterobacteriaceae possessing mobilized colistin resistance genes (mcr-1 and mcr-2) remains obscure in Hong Kong. As part of routine surveillance on emerging antibiotic resistance, we conducted a prospective study on this topic in a regional hospital in Hong Kong. METHODS: From October 31 to November 25, 2016, all fecal specimens submitted for routine analysis were included in this surveillance study. These comprised 672 consecutive routine fecal specimens collected from 616 individuals. Fecal specimens were screened for colistin-resistant Enterobacteriaceae by culture-based method, and the presence of mcr-1 and mcr-2 genes in resistant isolates was identified by polymerase chain reaction and Sanger sequencing. Whole genome sequencing (WGS) of mcr-1-possessing Escherichia coli strains was facilitated using Illumina® MiSeq® followed by sequence analysis with appropriate bioinformatics tools. RESULTS: Fourteen mcr-1-positive E. coli strains were isolated from 14 separate individuals (2.08% of total fecal specimens), with 9 of them being asymptomatic, healthy clients coming for health assessment. No mcr-2-possessing Enterobacteriaceae was identified. Colistin minimum inhibitory concentrations of these mcr-1-positive isolates ranged from 2 to 4 µg/mL. All these isolates were susceptible to carbapenems with 2 being extended spectrum ß-lactamase producers. WGS data revealed that these isolates belonged to at least 12 different sequence types (STs) and possessed diversified plasmid replicons, virulence and acquired antibiotic resistance genes. Further study on an E. coli ST201 strain (Pasteur scheme) revealed coexistence of 47,818-bp IncP-1 and 33,309-bp IncX4 types of mcr-1 plasmids, which was a combination of stability and high transmissibility. CONCLUSIONS: To the best of our knowledge, this is the first study on human fecal carriage of Enterobacteriaceae possessing mcr-1 and mcr-2 genes in Hong Kong. Our data further revealed asymptomatic carriage of mcr-1-possessing Enterobacteriaceae by both patients and healthy individuals. This is alarming considering wide diversity and high transmissibility of mcr-1 plasmids, which potentially facilitate emergence of pan-drug-resistant bacteria in future infection. This also highlights the importance of surveillance on emerging antibiotic resistance, especially for patients under intensive care.


Subject(s)
Bacterial Proteins/genetics , Cytochrome-B(5) Reductase/genetics , Enterobacteriaceae Infections/pathology , Enterobacteriaceae/genetics , Feces/microbiology , Adult , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Child , Child, Preschool , Colistin/pharmacology , Cytochrome-B(5) Reductase/metabolism , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/microbiology , Escherichia coli/genetics , Escherichia coli/metabolism , Hong Kong , Hospitals , Humans , Infant , Microbial Sensitivity Tests , Middle Aged , Plasmids/metabolism , Prospective Studies , Sequence Analysis, DNA , Whole Genome Sequencing
11.
Cancer Genet ; 218-219: 15-19, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29153093

ABSTRACT

In a newly diagnosed patient with acute myeloid leukemia (AML) and complex cytogenetics and negative for gene mutations associated with myeloid neoplasms, RNA sequencing by next-generation sequencing (NGS) through a large cancer-related gene panel showed ETV6-LYN leukemic fusion transcript. Breakpoint analysis of the NGS reads showed fusion of exon 5 of the ETV6 gene to exon 8 of the LYN gene. Metaphase fluorescence in situ hybridization (FISH) inferred a four-break rearrangement of three chromosomes, namely 1, 8 and 12. First, there was a balanced translocation t(1;12)(p13;p13.2) in which the ETV6 was split between der(1) and der(12). Second, an inverted insertion of 8q12.1~q24.21 into 1p13 occurred, thus bringing ETV6 and LYN into juxtaposition in the correct 5' to 3' orientation to produce an in-frame chimeric fusion gene on der(1). Notwithstanding two previous reports of ETV6-LYN fusion in myeloproliferative neoplasms (MPN), we report the first case of this fusion in AML and hence broaden its disease association. We also illustrate the clinical utility of NGS based detection of gene fusion in the setting of complex karyotype or cryptic aberration, since this method does not require a priori knowledge of the translocation partner and exact breakpoints to guide the application of appropriate primers or probes.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 8/genetics , Gene Rearrangement , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , src-Family Kinases/genetics , Adult , Chromosome Aberrations , High-Throughput Nucleotide Sequencing/methods , Humans , In Situ Hybridization, Fluorescence , Leukemia, Myeloid, Acute/pathology , Male , ETS Translocation Variant 6 Protein
12.
Sci Rep ; 7(1): 1567, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28484262

ABSTRACT

Amplicon-based next-generation sequencing (NGS) has been widely adopted for genetic variation detection in human and other organisms. Conventional data analysis paradigm includes primer trimming before read mapping. Here we introduce BAMClipper that removes primer sequences after mapping original sequencing reads by soft-clipping SAM/BAM alignments. Mutation detection accuracy was affected by the choice of primer handling approach based on real NGS datasets of 7 human peripheral blood or breast cancer tissue samples with known BRCA1/BRCA2 mutations and >130000 simulated NGS datasets with unique mutations. BAMClipper approach detected a BRCA1 deletion (c.1620_1636del) that was otherwise missed due to edge effect. Simulation showed high false-negative rate when primers were perfectly trimmed as in conventional practice. Among the other 6 samples, variant allele frequencies of 5 BRCA1/BRCA2 mutations (indel or single-nucleotide variants) were diluted by apparently wild-type primer sequences from an overlapping amplicon (17 to 82% under-estimation). BAMClipper was robust in both situations and all 7 mutations were detected. When compared with Cutadapt, BAMClipper was faster and maintained equally high primer removal effectiveness. BAMClipper is implemented in Perl and is available under an open source MIT license at https://github.com/tommyau/bamclipper.


Subject(s)
Algorithms , DNA Primers/metabolism , High-Throughput Nucleotide Sequencing/methods , Mutation/genetics , Base Sequence , Computer Simulation , Gene Frequency/genetics , Humans
13.
Sci Transl Med ; 8(359): 359ra129, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27708062

ABSTRACT

An in vitro drug-screening platform on patient samples was developed and validated to design personalized treatment for relapsed/refractory acute myeloid leukemia (AML). Unbiased clustering and correlation showed that homoharringtonine (HHT), also known as omacetaxine mepesuccinate, exhibited preferential antileukemia effect against AML carrying internal tandem duplication of fms-like tyrosine kinase 3 (FLT3-ITD). It worked synergistically with FLT3 inhibitors to suppress leukemia growth in vitro and in xenograft mouse models. Mechanistically, the effect was mediated by protein synthesis inhibition and reduction of short-lived proteins, including total and phosphorylated forms of FLT3 and its downstream signaling proteins. A phase 2 clinical trial of sorafenib and HHT combination treatment in FLT3-ITD AML patients resulted in complete remission (true or with insufficient hematological recovery) in 20 of 24 patients (83.3%), reduction of ITD allelic burden, and median leukemia-free and overall survivals of 12 and 33 weeks. The regimen has successfully bridged five patients to allogeneic hematopoietic stem cell transplantation and was well tolerated in patients unfit for conventional chemotherapy, including elderly and heavily pretreated patients. This study validated the principle and clinical relevance of in vitro drug testing and identified an improved treatment for FLT3-ITD AML. The results provided the foundation for phase 2/3 clinical trials to ascertain the clinical efficacy of FLT3 inhibitors and HHT in combination.


Subject(s)
Gene Duplication , Harringtonines/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , fms-Like Tyrosine Kinase 3/genetics , Adult , Aged , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bone Marrow/drug effects , Bone Marrow/pathology , Cell Culture Techniques , Cell Line, Tumor , Cluster Analysis , Drug Evaluation, Preclinical , Drug Synergism , Female , Harringtonines/pharmacology , Homoharringtonine , Humans , Male , Mice , Middle Aged , Models, Biological , Niacinamide/analogs & derivatives , Phenylurea Compounds , Protein Biosynthesis/drug effects , Remission Induction , Sorafenib , Treatment Outcome , Young Adult , fms-Like Tyrosine Kinase 3/chemistry , fms-Like Tyrosine Kinase 3/metabolism
14.
J Mol Diagn ; 18(4): 580-94, 2016 07.
Article in English | MEDLINE | ID: mdl-27157322

ABSTRACT

Mutation in BRCA1/BRCA2 genes accounts for 20% of familial breast cancers, 5% to 10% of which may be due to other less penetrant genes which are still incompletely studied. Herein, a four-gene panel was used to examine the prevalence of BRCA1, BRCA2, TP53, and PTEN in hereditary breast and ovarian cancers in Southern Chinese population. In this cohort, 948 high-risk breast and/or ovarian patients were recruited for genetic screening by next-generation sequencing (NGS). The performance of our NGS pipeline was evaluated with 80 Sanger-validated known mutations and eight negative cases. With appropriate bioinformatics analysis pipeline, the detection sensitivity of NGS is comparable with Sanger sequencing. The prevalence of BRCA1/BRCA2 germline mutations was 9.4% in our Chinese cohort, of which 48.8% of the mutations arose from hotspot mutations. With the use of a tailor-made algorithm, HomopolymerQZ, more mutations were detected compared with single mutation detection algorithm. The frequencies of PTEN and TP53 were 0.21% and 0.53%, respectively, in the Southern Chinese patients with breast and/or ovarian cancers. High-throughput NGS approach allows the incorporation of control cohort that provides an ethnicity-specific data for polymorphic variants. Our data suggest that hotspot mutations screening such as SNaPshot could be an effective preliminary screening alternative adopted in a standard clinical laboratory without NGS setup.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Hereditary Breast and Ovarian Cancer Syndrome/genetics , High-Throughput Nucleotide Sequencing , Adult , Algorithms , Alleles , Female , Gene Frequency , Genes, BRCA1 , Genes, BRCA2 , Genes, p53 , High-Throughput Nucleotide Sequencing/methods , Humans , Middle Aged , PTEN Phosphohydrolase/genetics , Reproducibility of Results , Workflow
15.
Breast Cancer Res Treat ; 157(2): 211-215, 2016 06.
Article in English | MEDLINE | ID: mdl-27125668

ABSTRACT

Recently, RECQL was reported as a new breast cancer susceptibility gene. RECQL belongs to the RECQ DNA helicase family which unwinds double strand DNA and involved in the DNA replication stress response, telomere maintenance and DNA repair. RECQL deficient mice cells are prone to spontaneous chromosomal instability and aneuploidy, suggesting a tumor-suppressive role of RECQL in cancer. In this study, RECQL gene mutation screening was performed on 1110 breast cancer patients who were negative for BRCA1, BRCA2, TP53 and PTEN gene mutations and recruited from March 2007 to June 2015 in the Hong Kong Hereditary and High Risk Breast Cancer Program. Four different RECQL pathogenic mutations were identified in six of the 1110 (0.54 %) tested breast cancer patients. The identified mutations include one frame-shift deletion (c.974_977delAAGA), two splicing site mutations (c.394+1G>A, c.867+1G>T) and one nonsense mutation (c.796C>T, p.Gln266Ter). Two of the mutations (c.867+1G>T and p.Gln266Ter) were seen in more than one patients. This study provides the basis for existing of pathogenic RECQL mutations in Southern Chinese breast cancer patients. The significance of rare variants in RECQL gene in the estimation of breast cancer risk warranted further investigation in larger cohort of patients and in other ethnic groups.


Subject(s)
Asian People/genetics , Breast Neoplasms/genetics , Mutation , RecQ Helicases/genetics , Adult , Aged , Aged, 80 and over , China , Female , Genetic Predisposition to Disease , Humans , Middle Aged , Pedigree , Sequence Analysis, DNA/methods , Young Adult
16.
Diagn Pathol ; 11: 11, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26796102

ABSTRACT

BACKGROUND: Genomic techniques in recent years have allowed the identification of many mutated genes important in the pathogenesis of acute myeloid leukemia (AML). Together with cytogenetic aberrations, these gene mutations are powerful prognostic markers in AML and can be used to guide patient management, for example selection of optimal post-remission therapy. The mutated genes also hold promise as therapeutic targets themselves. We evaluated the applicability of a gene panel for the detection of AML mutations in a diagnostic molecular pathology laboratory. METHODS: Fifty patient samples comprising 46 AML and 4 other myeloid neoplasms were accrued for the study. They consisted of 19 males and 31 females at a median age of 60 years (range: 18-88 years). A total of 54 genes (full coding exons of 15 genes and exonic hotspots of 39 genes) were targeted by 568 amplicons that ranged from 225 to 275 bp. The combined coverage was 141 kb in sequence length. Amplicon libraries were prepared by TruSight myeloid sequencing panel (Illumina, CA) and paired-end sequencing runs were performed on a MiSeq (Illumina) genome sequencer. Sequences obtained were analyzed by in-house bioinformatics pipeline, namely BWA-MEM, Samtools, GATK, Pindel, Ensembl Variant Effect Predictor and a novel algorithm ITDseek. RESULTS: The mean count of sequencing reads obtained per sample was 3.81 million and the mean sequencing depth was over 3000X. Seventy-seven mutations in 24 genes were detected in 37 of 50 samples (74 %). On average, 2 mutations (range 1-5) were detected per positive sample. TP53 gene mutations were found in 3 out of 4 patients with complex and unfavorable cytogenetics. Comparing NGS results with that of conventional molecular testing showed a concordance rate of 95.5 %. After further resolution and application of a novel bioinformatics algorithm ITDseek to aid the detection of FLT3 internal tandem duplication (ITD), the concordance rate was revised to 98.2 %. CONCLUSIONS: Gene panel testing by NGS approach was applicable for sensitive and accurate detection of actionable AML gene mutations in the clinical laboratory to individualize patient management. A novel algorithm ITDseek was presented that improved the detection of FLT3-ITD of varying length, position and at low allelic burden.


Subject(s)
Biomarkers, Tumor/metabolism , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing , Leukemia, Myeloid, Acute/genetics , Mutation , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Computational Biology , Databases, Genetic , Exons , Female , Genetic Predisposition to Disease , Humans , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Phenotype , Predictive Value of Tests , Prognosis , Tandem Repeat Sequences , Tumor Suppressor Protein p53/genetics , Young Adult , fms-Like Tyrosine Kinase 3/genetics
17.
PLoS One ; 10(12): e0145994, 2015.
Article in English | MEDLINE | ID: mdl-26717578

ABSTRACT

Phorbol esters, which are protein kinase C (PKC) activators, and histone deacetylase (HDAC) inhibitors, which cause enhanced acetylation of cellular proteins, are the main classes of chemical inducers of Epstein-Barr virus (EBV) lytic cycle in latently EBV-infected cells acting through the PKC pathway. Chemical inducers which induce EBV lytic cycle through alternative cellular pathways may aid in defining the mechanisms leading to lytic cycle reactivation and improve cells' responsiveness towards lytic induction. We performed a phenotypic screening on a chemical library of 50,240 novel small organic compounds to identify novel class(es) of strong inducer(s) of EBV lytic cycle in gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC) cells. Five hit compounds were selected after three successive rounds of increasingly stringent screening. All five compounds are structurally diverse from each other and distinct from phorbol esters or HDAC inhibitors. They neither cause hyperacetylation of histone proteins nor significant PKC activation at their working concentrations, suggesting that their biological mode of action are distinct from that of the known chemical inducers. Two of the five compounds with rapid lytic-inducing action were further studied for their mechanisms of induction of EBV lytic cycle. Unlike HDAC inhibitors, lytic induction by both compounds was not inhibited by rottlerin, a specific inhibitor of PKCδ. Interestingly, both compounds could cooperate with HDAC inhibitors to enhance EBV lytic cycle induction in EBV-positive epithelial cancer cells, paving way for the development of strategies to increase cells' responsiveness towards lytic reactivation. One of the two compounds bears structural resemblance to iron chelators and the other strongly activates the MAPK pathways. These structurally diverse novel organic compounds may represent potential new classes of chemicals that can be used to investigate any alternative mechanism(s) leading to EBV lytic cycle reactivation from latency.


Subject(s)
Carcinoma/virology , Herpesvirus 4, Human/drug effects , Histone Deacetylase Inhibitors/pharmacology , Protein Kinase C/drug effects , Virus Activation/drug effects , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Flow Cytometry , Herpesvirus 4, Human/physiology , High-Throughput Screening Assays , Humans
18.
Mol Cancer Ther ; 12(5): 747-58, 2013 May.
Article in English | MEDLINE | ID: mdl-23475956

ABSTRACT

A novel drug combination of a proteasome inhibitor, bortezomib, and a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), was tested in nasopharyngeal carcinoma (NPC), both in vitro and in vivo. Dose-response of different concentrations of bortezomib and SAHA on inhibition of cell proliferation of NPC was determined. Mechanisms of apoptosis and effects on lytic cycle activation of Epstein-Barr virus (EBV) were investigated. Combination of bortezomib and SAHA (bortezomib/SAHA) synergistically induced killing of a panel of NPC cell lines. Pronounced increase in sub-G1, Annexin V-positive, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cell populations were detected after treatment with bortezomib/SAHA when compared with either drug alone. Concomitantly, markedly augmented proteolytic cleavage of PARP, caspase-3, -7, -8, and -9, reactive oxygen species (ROS) generation, and caspase-8-dependent histone acetylation were observed. ROS scavenger, N-acetyl cysteine, diminished the apoptotic effects of bortezomib/SAHA, whereas caspase inhibitor Z-VAD-FMK significantly suppressed the apoptosis without decreasing the generation of ROS. Bortezomib inhibited SAHA's induction of EBV replication and abrogated production of infectious viral particles in NPC cells. Furthermore, bortezomib/SAHA potently induced apoptosis and suppressed the growth of NPC xenografts in nude mice. In conclusion, the novel drug combination of bortezomib and SAHA is highly synergistic in the killing of NPC cells in vitro and in vivo. The major mechanism of cell death is ROS-driven caspase-dependent apoptosis. Bortezomib antagonizes SAHA's activation of EBV lytic cycle in NPC cells. This study provides a strong basis for clinical testing of the combination drug regimen in patients with NPC.


Subject(s)
Boronic Acids/pharmacology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/physiology , Hydroxamic Acids/pharmacology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/virology , Pyrazines/pharmacology , Reactive Oxygen Species/metabolism , Virus Replication/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Boronic Acids/chemistry , Boronic Acids/toxicity , Bortezomib , Carcinoma , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Female , Heterografts , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/toxicity , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/toxicity , Mice , Mice, Nude , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/pathology , Pyrazines/chemistry , Pyrazines/toxicity , Signal Transduction/drug effects , Tumor Burden/drug effects , Vorinostat
19.
Int J Cancer ; 131(8): 1930-40, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22261816

ABSTRACT

Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV). We reported that suberoylanilide hydroxamic acid (SAHA) induced EBV lytic cycle in EBV-positive gastric carcinoma cells and mediated enhanced cell death. However, expression of EBV lytic proteins was thought to exert antiapoptotic effect in EBV-infected cells. Here, we examined the in vitro and in vivo effects of SAHA on EBV lytic cycle induction in NPC cells and investigated the cellular consequences. Micromolar concentrations of SAHA significantly induced EBV lytic cycle in EBV-positive NPC cells. Increased apoptosis and proteolytic cleavage of poly(ADP-ribose) polymerase and caspase-3, -7 and -9 in EBV-positive versus EBV-negative NPC cells were observed. More than 85% of NPC cells expressing immediate-early (Zta), early (BMRF1) or late (gp350/220) lytic proteins coexpressed cleaved caspase-3. Tracking of expression of EBV lytic proteins and cleaved caspase-3 over time demonstrated that NPC cells proceeded to apoptosis following EBV lytic cycle induction. Inhibition of EBV DNA replication and late lytic protein expression by phosphonoformic acid did not impact on SAHA's induced cell death in NPC, indicating that early rather than late phase of EBV lytic cycle contributed to the apoptotic effect. In vivo effects of SAHA on EBV lytic cycle induction and tumor growth suppression were also observed in NPC xenografts in nude mice. Taken together, our data indicated that activation of lytic cycle from latent cycle of EBV by SAHA leads to apoptosis and tumor growth suppression of NPC thereby providing experimental evidence for virus-targeted therapy against EBV-positive cancer.


Subject(s)
Apoptosis/drug effects , Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human/drug effects , Hydroxamic Acids/pharmacology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Virus Replication/drug effects , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Carcinoma , Cell Proliferation/drug effects , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/virology , Female , Flow Cytometry , Humans , Immunoenzyme Techniques , Mice , Mice, Inbred BALB C , Mice, Nude , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/virology , Poly(ADP-ribose) Polymerases/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Vorinostat
20.
Proc Natl Acad Sci U S A ; 105(35): 12861-6, 2008 Sep 02.
Article in English | MEDLINE | ID: mdl-18753631

ABSTRACT

Lipopeptide detergents (LPDs) are a new class of amphiphile designed specifically for the structural study of integral membrane proteins. The LPD monomer consists of a 25-residue peptide with fatty acyl chains linked to side chains located at positions 2 and 24 of the peptide. LPDs are designed to form alpha-helices that self-assemble into cylindrical micelles, providing a more natural interior acyl chain packing environment relative to traditional detergents. We have determined the crystal structure of LPD-12, an LPD coupled to two dodecanoic acids, to a resolution of 1.20 A. The LPD-12 monomers adopt the target conformation and associate into cylindrical octamers as expected. Pairs of helices are strongly associated as Alacoil-type antiparallel dimers, and four of these dimers interact through much looser contacts into assemblies with approximate D(2) symmetry. The aligned helices form a cylindrical shell with a hydrophilic exterior that protects an interior hydrophobic cavity containing the 16 LPD acyl chains. Over 90% of the methylene/methyl groups from the acylated side chains are visible in the micelle interiors, and approximately 90% of these adopt trans dihedral angle conformations. Dodecylmaltoside (DDM) was required for the crystallization of LPD-12, and we find 10-24 ordered DDM molecules associated with each LPD assembly, resulting in an overall micelle molecular weight of approximately 30 kDa. The structures confirm the major design objectives of the LPD framework, and reveal unexpected features that will be helpful in the engineering additional versions of lipopeptide amphiphiles.


Subject(s)
Detergents/chemistry , Lipids/chemistry , Peptides/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Dimerization , Glucosides/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...