Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(23): e2309952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38389497

ABSTRACT

Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.


Subject(s)
Hydrogels , Wearable Electronic Devices , Hydrogels/chemistry , Humans , Biocompatible Materials/chemistry , Printing, Three-Dimensional , Prostheses and Implants , Polymers/chemistry , Animals , Mechanical Phenomena , Robotics
2.
Nat Commun ; 15(1): 1636, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388467

ABSTRACT

Compliant strain sensors are crucial for soft robots' perception and autonomy. However, their deformable bodies and dynamic actuation pose challenges in predictive sensor manufacturing and long-term robustness. This necessitates accurate sensor modelling and well-controlled sensor structural changes under strain. Here, we present a computational sensor design featuring a programmed crack array within micro-crumples strategy. By controlling the user-defined structure, the sensing performance becomes highly tunable and can be accurately modelled by physical models. Moreover, they maintain robust responsiveness under various demanding conditions including noise interruptions (50% strain), intermittent cyclic loadings (100,000 cycles), and dynamic frequencies (0-23 Hz), satisfying soft robots of diverse scaling from macro to micro. Finally, machine intelligence is applied to a sensor-integrated origami robot, enabling robotic trajectory prediction (<4% error) and topographical altitude awareness (<10% error). This strategy holds promise for advancing soft robotic capabilities in exploration, rescue operations, and swarming behaviors in complex environments.

3.
Natl Sci Rev ; 10(9): nwad186, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37565206

ABSTRACT

Weather-adaptive energy harvesting of omnipresent waste heat and rain droplets, though promising in the field of environmental energy sustainability, is still far from practice due to its low electrical output owing to dielectric structure irrationality and unscalability. Here we present atypical upcycling of ambient heat and raindrop energy via an all-in-one non-planar energy harvester, simultaneously increasing solar pyroelectricity and droplet-based triboelectricity by two-fold, in contrast to conventional counterparts. The delivered non-planar dielectric with high transmittance confines the solar irradiance onto a focal hotspot, offering transverse thermal field propagation towards boosted inhomogeneous polarization with a generated power density of 6.1 mW m-2 at 0.2 sun. Moreover, the enlarged lateral surface area of curved architecture promotes droplet spreading/separation, thus travelling the electrostatic field towards increased triboelectricity. These enhanced pyroelectric and triboelectric outputs, upgraded with advanced manufacturing, demonstrate applicability in adaptive sustainable energy harvesting on sunny, cloudy, night, and rainy days. Our findings highlight a facile yet efficient strategy, not only for weather-adaptive environmental energy recovery but also in providing key insights for spatial thermal/electrostatic field manipulation in thermoelectrics and ferroelectrics.

4.
Small ; 19(39): e2301121, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37271929

ABSTRACT

Optimizing catalysts for competitive photocatalytic reactions demand individually tailored band structure as well as intertwined interactions of light absorption, reaction activity, mass, and charge transport.  Here, a nanoparticulate host-guest structure is rationally designed that can exclusively fulfil and ideally control the aforestated uncompromising requisites for catalytic reactions. The all-inclusive model catalyst consists of porous Co3 O4 host and Znx Cd1- x S guest with controllable physicochemical properties enabled by self-assembled hybrid structure and continuously amenable band gap. The effective porous topology nanoassembly, both at the exterior and the interior pores of a porous metal-organic framework (MOF), maximizes spatially immobilized semiconductor nanoparticles toward high utilization of particulate heterojunctions for vital charge and reactant transfer. In conjunction, the zinc constituent band engineering is found to regulate the light/molecules absorption, band structure, and specific reaction intermediates energy to attain high photocatalytic CO2 reduction selectivity. The optimal catalyst exhibits a H2 -generation rate up to 6720 µmol g-1 h-1 and a CO production rate of 19.3 µmol g-1 h-1 . These findings provide insight into the design of discrete host-guest MOF-semiconductor hybrid system with readily modulated band structures and well-constructed heterojunctions for selective solar-to-chemical conversion.

5.
Adv Funct Mater ; 33(9)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-37090954

ABSTRACT

Adhesive materials have recently drawn intensive attention due to their excellent sealing ability, thereby stimulating advances in materials science and industrial usage. However, reported adhesives usually exhibit weak adhesion strength, require high pressure for strong bonding, and display severe adhesion deterioration in various harsh environments. In this work, instead of water or organic solvents, a deep eutectic solution (DES) was used as the medium for photopolymerization of zwitterionic and polarized monomers, thus generating a novel ionogel with tunable mechanical properties. Multiple hydrogen bonds and electrostatic interactions between DES and monomers facilitated ultrafast gelation and instant bonding without any external pressure, which was rarely reported previously. Furthermore, high adhesion in different harsh environments (e.g., water, acidic and basic buffers, and saline solutions) and onto hydrophilic (e.g., glass and tissues) and hydrophobic (e.g., polymethyl methacrylate, polystyrene, and polypropylene) adherends was demonstrated. Also, high stretchability of the ionogel at extreme temperatures (-80 and 80 °C) indicated its widespread applications. Furthermore, the biocompatible ionogel showed high burst pressure onto stomach and intestine tissues to prevent liquid leakage, highlighting its potential as an adhesive patch. This ionogel provides unprecedented opportunities in the fields of packaging industry, marine engineering, medical adhesives, and electronic assembly.

6.
Nature ; 616(7956): 293-299, 2023 04.
Article in English | MEDLINE | ID: mdl-36991120

ABSTRACT

Freestanding functional inorganic membranes, beyond the limits of their organic and polymeric counterparts1, may unlock the potentials of advanced separation2, catalysis3, sensors4,5, memories6, optical filtering7 and ionic conductors8,9. However, the brittle nature of most inorganic materials, and the lack of surface unsaturated linkages10, mean that it is difficult to form continuous membranes through conventional top-down mouldings and/or bottom-up syntheses11. Up to now, only a few specific inorganic membranes have been fabricated from predeposited films by selective removal of sacrificial substrates4-6,8,9. Here we demonstrate a strategy to switch nucleation preferences in aqueous systems of inorganic precursors, resulting in the formation of various ultrathin inorganic membranes at the air-liquid interface. Mechanistic study shows that membrane growth depends on the kinematic evolution of floating building blocks, which helps to derive the phase diagram based on geometrical connectivity. This insight provides general synthetic guidance towards any unexplored membranes, as well as the principle of tuning membrane thickness and through-hole parameters. Beyond understanding  a complex dynamic system, this study comprehensively expands the traditional notion of membranes in terms of composition, structure and functionality.

7.
Sci Adv ; 9(2): eadf5701, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36638175

ABSTRACT

Flexible thermoelectric harvesting of omnipresent spatial thermodynamic energy, though promising in low-grade waste heat recovery (<100°C), is still far from industrialization because of its unequivocal cost-ineffectiveness caused by low thermoelectric efficiency and power-cost coupled device topology. Here, we demonstrate unconventional upcycling of low-grade heat via physics-guided rationalized flexible thermoelectrics, without increasing total heat input or tailoring material properties, into electricity with a power-cost ratio (W/US$) enhancement of 25.3% compared to conventional counterparts. The reduced material usage (44%) contributes to device power-cost "decoupling," leading to geometry-dependent optimal electrical matching for output maximization. This offers an energy consumption reduction (19.3%), electricity savings (0.24 kWh W-1), and CO2 emission reduction (0.17 kg W-1) for large-scale industrial production, fundamentally reshaping the R&D route of flexible thermoelectrics for techno-economic sustainable heat harvesting. Our findings highlight a facile yet cost-effective strategy not only for low-grade heat harvesting but also for electronic co-design in heat management/recovery frontiers.

8.
Nat Commun ; 14(1): 426, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36702841

ABSTRACT

Pyroelectricity originates from spontaneous polarization variation, promising in omnipresent non-static thermodynamic energy harvesting. Particularly, changing spontaneous polarization via out-of-plane uniform heat perturbations has been shown in solar pyroelectrics. However, these approaches present unequivocal inefficiency due to spatially coupled low temperature change and duration along the longitudinal direction. Here we demonstrate unconventional giant polarization ripples in transverse pyroelectrics, without increasing the total energy input, into electricity with an efficiency of 5-fold of conventional longitudinal counterparts. The non-uniform graded temperature variation arises from decoupled heat localization and propagation, leading to anomalous in-plane heat perturbation (29-fold) and enhanced thermal disequilibrium effects. This in turn triggers an augmented polarization ripple, fundamentally enabling unprecedented electricity generation performance. Notably, the device generates a power density of 38 mW m-2 at 1 sun illumination, which is competitive with solar thermoelectrics and ferrophotovoltaics. Our findings provide a viable paradigm, not only for universal practical pyroelectric heat harvesting but for flexible manipulation of transverse heat transfer towards sustainable energy harvesting and management.

9.
ACS Nano ; 16(11): 18608-18620, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36318185

ABSTRACT

On-skin patches that record biopotential and biomechanical signals are essential for wearable healthcare monitoring, clinical treatment, and human-machine interaction. To acquire wearing comfort and high-quality signals, patches with tissue-like softness, elastic recovery, damage tolerance, and robust bioelectronic interface are highly desired yet challenging to achieve. Here, we report a dry epidermal patch made from a supramolecular polymer (SESA) and an in situ transferred carbon nanotubes' percolation network. The polymer possesses a hybrid structure of copolymerized permanent scaffold permeated by multiple dynamic interactions, which imparts a desired mechanical response transition from elastic recoil to energy dissipation with increased elongation. Such SESA-based patches are soft (Young's modulus ∼0.1 MPa) and elastic within physiologically relevant strain levels (97% elastic recovery at 50% tensile strain), intrinsically mechanical-electrical damage-resilient (∼90% restoration from damage after 5 min), and interference-immune in dynamic signal acquisition (stretch, underwater, sweat). We demonstrate its versatile physiological sensing applications, including electrocardiogram recording under various disturbances, machine-learning-enabled hand-gesture recognition through electromyogram measurement, subtle radial artery pulse, and drastic knee kinematics sensing. This epidermal patch offers a promising noninvasive, long-duration, and ambulant bioelectronic interfacing with anti-interference robustness.


Subject(s)
Nanotubes, Carbon , Humans , Nanotubes, Carbon/chemistry , Skin , Sweat , Elastic Modulus , Polymers/chemistry
10.
Nat Commun ; 13(1): 3369, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690594

ABSTRACT

Mechanical properties of hydrogels are crucial to emerging devices and machines for wearables, robotics and energy harvesters. Various polymer network architectures and interactions have been explored for achieving specific mechanical characteristics, however, extreme mechanical property tuning of single-composition hydrogel material and deployment in integrated devices remain challenging. Here, we introduce a macromolecule conformational shaping strategy that enables mechanical programming of polymorphic hydrogel fiber based devices. Conformation of the single-composition polyelectrolyte macromolecule is controlled to evolve from coiling to extending states via a pH-dependent antisolvent phase separation process. The resulting structured hydrogel microfibers reveal extreme mechanical integrity, including modulus spanning four orders of magnitude, brittleness to ultrastretchability, and plasticity to anelasticity and elasticity. Our approach yields hydrogel microfibers of varied macromolecule conformations that can be built-in layered formats, enabling the translation of extraordinary, realistic hydrogel electronic applications, i.e., large strain (1000%) and ultrafast responsive (~30 ms) fiber sensors in a robotic bird, large deformations (6000%) and antifreezing helical electronic conductors, and large strain (700%) capable Janus springs energy harvesters in wearables.


Subject(s)
Hydrogels , Polymers , Elasticity , Polyelectrolytes
11.
Small Methods ; 5(5): e2001200, 2021 May.
Article in English | MEDLINE | ID: mdl-34928082

ABSTRACT

Freshwater production is one of the biggest global challenges today. Though desalination can provide a climate-independent source of clean water, the process requires a high energy consumption. Emerging advancement of photothermal nanomaterials and the urgent demand for a green technology transition have reinvigorated the established solar distillation technology. The current development of photothermal vaporization focuses on material innovation and interfacial heating, which largely emphasizes vapor generation efficiency, without considering pragmatic water collection. Moreover, salt accumulation is another critical issue of seawater solar-driven vaporization. The incorporation of photothermal materials into a photothermal membrane distillation (PMD) solar evaporator design harmoniously resolves these issues through combination of renewable energy and efficient interfacial distillation, to achieve the ultimate goal of practical saline water into freshwater conversion. At this juncture, it is imperative to review the recent opportunities and progresses of the PMD system. Here, the fundamental photothermal processes, strategies for efficient evaporator design, evaluation of various criteria for photothermal material incorporation with desired properties, discussions on desalination, water treatment, and energy generation applications are covered. Guidelines in material and system designs to further advance the PMD system that is highly promising in delivering portable water for both large-scale and decentralized systems are provided.

12.
Adv Sci (Weinh) ; 8(19): e2101232, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34363347

ABSTRACT

Solar-driven water evaporation and valuable fuel generation is an environmentally friendly and sustainable way for clean water and energy production. However, a few bottlenecks for practical applications are high-cost, low productivity, and severe sunlight angle dependence. Herein, solar evaporation with enhanced photocatalytic capacity that is light direction insensitive and of efficiency breakthrough by virtue of a three-dimensional (3D) photothermal catalytic spherical isotopic evaporator is demonstrated. A homogeneous layer of microfluidic blow spun polyamide nanofibers loaded with efficient light absorber of polypyrrole nanoparticles conformally wraps onto a lightweight, thermal insulating plastic sphere, featuring favorable interfacial solar heating and efficient water transportation. The 3D spherical geometry not only guarantees the omnidirectional solar absorbance by the light-facing hemisphere, but also keeps the other hemisphere under shadow to harvest energy from the warmer environment. As a result, the light-to-vapor efficiency exceeds the theoretical limit, reaching 217% and 156% under 1 and 2 sun, respectively. Simultaneously, CO2 photoreduction with generated steam reveals a favorable clean fuels production rate using photocatalytic spherical evaporator by secondary growth of Cu2 O nanoparticles. Finally, an outdoor demonstration manifests a high evaporation rate and easy-to-perform construction on-site, providing a promising opportunity for efficient and decentralized water and clean fuel production.

13.
Sci Adv ; 7(2)2021 Jan.
Article in English | MEDLINE | ID: mdl-33523978

ABSTRACT

Bioinspired nano/microswarm enables fascinating collective controllability beyond the abilities of the constituent individuals, yet almost invariably, the composed units are of single species. Advancing such swarm technologies poses a grand challenge in synchronous mass manipulation of multimaterials that hold different physiochemical identities. Here, we present a dynamic thermal trapping strategy using thermoresponsive-based magnetic smart nanoparticles as host species to reversibly trap and couple given nonmagnetic entities in aqueous surroundings, enabling cross-species smart nanoparticle swarms (SMARS). Such trapping process endows unaddressable nonmagnetic species with efficient thermo-switchable magnetic response, which determines SMARS' cross-species synchronized maneuverability. Benefiting from collective merits of hybrid components, SMARS can be configured into specific smart modules spanning from chain, vesicle, droplet, to ionic module, which can implement localized or distributed functions that are single-species unachievable. Our methodology allows dynamic multimaterials integration despite the odds of their intrinsic identities to conceive distinctive structures and functions.

14.
Nat Commun ; 11(1): 6006, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243999

ABSTRACT

Textile electronics are poised to revolutionize future wearable applications due to their wearing comfort and programmable nature. Many promising thermoelectric wearables have been extensively investigated for green energy harvesting and pervasive sensors connectivity. However, the practical applications of the TE textile are still hindered by the current laborious p/n junctions assembly of limited scale and mechanical compliance. Here we develop a gelation extrusion strategy that demonstrates the viability of digitalized manufacturing of continuous p/n TE fibers at high scalability and process efficiency. With such alternating p/n-type TE fibers, multifunctional textiles are successfully woven to realize energy harvesting on curved surface, multi-pixel touch panel for writing and communication. Moreover, modularized TE garments are worn on a robotic arm to fulfill diverse active and localized tasks. Such scalable TE fiber fabrication not only brings new inspiration for flexible devices, but also sets the stage for a wide implementation of multifunctional textile-electronics.

15.
Adv Mater ; 32(21): e2000351, 2020 May.
Article in English | MEDLINE | ID: mdl-32285545

ABSTRACT

Living organisms are capable of sensing and responding to their environment through reflex-driven pathways. The grand challenge for mimicking such natural intelligence in miniature robots lies in achieving highly integrated body functionality, actuation, and sensing mechanisms. Here, somatosensory light-driven robots (SLiRs) based on a smart thin-film composite tightly integrating actuation and multisensing are presented. The SLiR subsumes pyro/piezoelectric responses and piezoresistive strain sensation under a photoactuator transducer, enabling simultaneous yet non-interfering perception of its body temperature and actuation deformation states. The compact thin film, when combined with kirigami, facilitates rapid customization of low-profile structures for morphable, mobile, and multiple robotic functionality. For example, an SLiR walker can move forward on different surfaces, while providing feedback on its detailed locomotive gaits and subtle terrain textures, and an SLiR anthropomorphic hand shows bodily senses arising from concerted mechanoreception, thermoreception, proprioception, and photoreception. Untethered operation with an SLiR centipede is also demonstrated, which can execute distinct, localized body functions from directional motility, multisensing, to wireless human and environment interactions. This SLiR, which is capable of integrated perception and motility, offers new opportunities for developing diverse intelligent behaviors in soft robots.

16.
Adv Sci (Weinh) ; 6(21): 1901129, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31728281

ABSTRACT

Continuing population growth and accelerated fossil-fuel consumption with recent technological advancements have engendered energy and environmental concerns, urging researchers to develop advanced functional materials to overcome the associated problems. Metal-organic frameworks (MOFs) have emerged as frontier materials due to their unique porous organic-inorganic hybrid periodic assembly and exceptional diversity in structural properties and chemical functionalities. In particular, the modular nature and modularity-dependent activity of MOFs and MOF derivatives have accentuated the delicate atomic- and molecular design and synthesis of MOFs, and their meticulous conversion into carbons and transition-metal-based materials. Synthetic control over framework architecture, content, and reactivity has led to unprecedented merits relevant to various energy and environmental applications. Herein, an overview of the atomic- and molecular-design strategies of MOFs to realize application-targeted properties is provided. Recent progress on the development of MOFs and MOF derivatives based on these strategies, along with their performance, is summarized with a special emphasis on design-structure and functionality-activity relationships. Next, the respective energy- and environmental-related applications of catalysis and energy storage, as well as gas storage-separation and water harvesting with close association to the energy-water-environment nexus are highlighted. Last, perspectives on current challenges and recommendations for further development of MOF-based materials are also discussed.

17.
ACS Nano ; 13(11): 13176-13184, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31625724

ABSTRACT

Hydrogels are promising starting materials for biomimetic soft robots as they are intrinsically soft and hold properties analogous to nature's organic parts. However, the restrictive mold-casting and post-assembly fabrication alongside mechanical fragility impedes the development of hydrogel-based soft robots. Herein, we harness biocompatible alginate as a rheological modifier to manufacture 3D freeform architectures of both chemically and physically cross-linked hydrogels using the direct-ink-write (DIW) printing. The intrinsically hydrophilic polymer network of alginate allows the preservation of the targeted functions of the host hydrogels, accompanied by enhanced mechanical toughness. The integration of free structures and available functionalities from diversified hydrogel family renders an enriched design platform for bioinspired fluidic and stimulus-activated robotic prototypes from an artificial mobile tentacle, a bioengineered robotic heart with beating-transporting functions, and an artificial tendril with phototropic motion. The design strategy expands the capabilities of hydrogels in realizing geometrical versatility, mechanical tunability, and actuation complexity for biocompatible soft robots.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Printing, Three-Dimensional
18.
Adv Sci (Weinh) ; 6(15): 1900140, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31406663

ABSTRACT

The design of MoS2-based electrocatalysts with exceptional reactivity and robustness remains a challenge due to thermodynamic instability of active phases and catalytic passiveness of basal planes. This study details a viable in situ reconstruction of zinc-nitrogen coordinated cobalt-molybdenum disulfide from structure directing metal-organic framework (MOF) to constitute specific heteroatomic coordination and surface ligand functionalization. Comprehensive experimental spectroscopic studies and first-principle calculations reveal that the rationally designed electron-rich centers warrant efficient charge injection to the inert MoS2 basal planes and augment the electronic structure of the inactive sites. The zinc-nitrogen coordinated cobalt-molybdenum disulfide shows exceptional catalytic activity and stability toward the hydrogen evolution reaction with a low overpotential of 72.6 mV at -10 mA cm-2 and a small Tafel slope of 37.6 mV dec-1. The present study opens up a new opportunity to stimulate catalytic activity of the in-plane MoS2 basal domains for enhanced electrochemistry and redox reactivity through a "molecular reassembly-to-heteroatomic coordination and surface ligand functionalization" based on highly adaptable MOF template.

19.
Adv Mater ; 31(37): e1903605, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31364796

ABSTRACT

Converting and storing intermittent solar energy into stable chemical fuels of high efficiency depend crucially on harvesting excess energy beyond the conventional ultraviolet light spectrum. The means of applying highly efficient solar-thermal conversion on practical electricity-driven water splitting could be a significant stride toward this goal, while some bottlenecks remain unresolved. Herein, photothermic electrocatalytic oxygen and hydrogen evolution reactions are proposed, which bestow a distinctive exothermic activation and electrochemical reactivity in a reconstructed electrolyzer system, and which are poised for efficient renewable energy production. Attributed to the synergistic in situ coupling of the N-doped carbon, metallic alloy and oxides, in view of their broadband light absorption, high electrochemical surface area, and efficient charge transfer attributes, the hybrid photothermal electrocatalytic electrode simultaneously satisfies efficient photon-to-heat conversion and augmented electrochemical catalytic activity. Finally, a system level design of an appropriate photothermally mediated electrolytic cell with close-proximity light-illumination window along with a low-thermal-emittance electrolyte separator that preserve an overall large localized thermal gradient and efficient mass transport is devised. Such a photothermally mediated electrocatalytic system presented here may open up new avenues for the development of solar-thermal energy utilization in other forms.

20.
Small ; 15(36): e1903042, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31338955

ABSTRACT

Though plasmonic effect is making some headway in the energy harvesting realm, its fundamental charge transfer mechanism to a large extent is attributed to the hot-carrier generation at the contact interface. Herein this work attempts to elucidate the physical origin of light induced plasmo-pyroelectric enhancement based on charge density manipulation on surface state in the vicinity of the metal-ferroelectric contact interface. More importantly, by tuning the band bending, it is shown that the charge density on the surface state of a hybrid plasmo-pyroelectric (BaTiO3 -Ag) nanosystem can be manipulated and largely increased under the resonant blue light illumination (363 nm). It is also demonstrated that owing to this effect, the spatial pyroelectric activity of a hybrid plasmo-pyroelectric nanosystem governs 46% enhancement in pyroelectric coefficient. This research highlights the optically regulated charge density in plasmo-pyroelectric nanosystems, which could pave a new avenue for energy harvesting/conversion devices with distinguished advantages in wireless, photonic-controlled, localized, and dynamic stimulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...