Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 14(14): e1703695, 2018 04.
Article in English | MEDLINE | ID: mdl-29473298

ABSTRACT

This study designs a microscaled thermoelectric component featuring a nanogap of varying size (133-900 nm) between the tips of the component. Electricity and heat are transmitted between the gap of the tips through the thermionic emission of electrons. Because the gaps exhibit a discontinuous structure, the phonon's contribution to thermal conductivity can be virtually neglected, thereby enhancing the thermoelectric figure of merit (ZT) of the designed thermoelectric component. The experimental results reveal that a narrow tip gap generates stronger thermoelectric effects, with Seebeck voltage and Seebeck coefficient being respectively, one and two orders of magnitude greater than those of the thermoelectric effects of nanowires. The thermoelectric figure of merit without considering the contributions from other heat carriers is higher than the value of thermoelectric devices developed in recent years. For a set of asymmetrical thin film electrodes of differing sizes, the thermoelectric effects generated in the heating process of large thin films are stronger than those of small thin films. Furthermore, adding nanoparticles to the nanogap facilitate the thermionic emission of electrons, in which electrons hop from the hot end to the cold end, thereby intensifying the thermoelectric effects of the nanogap.

SELECTION OF CITATIONS
SEARCH DETAIL
...