Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794324

ABSTRACT

Chitosan-triphosphate (TPP) nanogels are widely studied drug delivery carrier systems, typically prepared via a simple mixing process. However, the effects of the processing factors on nanogel production have not been extensively explored, despite the importance of understanding and standardising such factors to allow upscaling and commercial usage. This study aims to systematically evaluate the effects of various fabrication and processing factors on the properties of nanogels using a Design of Experiment approach. Hydrodynamic size, polydispersity index (PDI), zeta potential, and encapsulation efficiency were determined as the dependent factors. The temperature, stirring rate, chitosan grade, crosslinker choice, and the interaction term between temperature and chitosan grade were found to have a significant effect on the particle size, whereas the effect of temperature and the addition rate of crosslinker on the PDI was also noteworthy. Moreover, the addition rate of the crosslinker and the volume of the reaction vessel were found to impact the encapsulation efficiency. The zeta potential of the nanogels was found to be governed by the chitosan grade. The optimal fabrication conditions for the development of medium molecular weight chitosan and TPP nanogels included the following: the addition rate for TPP solution was set at 2 mL/min, while the solution was then stirred at a temperature of 50 °C and a stirring speed of 600 rpm. The volume of the glass vial used was 28 mL, while the stirrer size was 20 mm. The second aim of the study was to evaluate the potential for scaling up the nanogels. Size and PDI were found to increase from 128 nm to 151 nm and from 0.232 to 0.267, respectively, when the volume of the reaction mixture was increased from 4 to 20 mL and other processing factors were kept unchanged. These results indicate that caution is required when scaling up as the nanogel properties may be significantly altered with an increasing production scale.

2.
Anal Biochem ; 654: 114793, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35750251

ABSTRACT

N-acetyl-seryl-aspartyl-lysyl proline (Ac-SDKP) is a tetrapeptide possessing anti-fibrotic, angiogenic, anti-inflammatory, anti-apoptotic, and immunomodulatory properties. Currently, the main method to quantify the peptide is liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA), both of which are labour intensive and require expensive equipment and consumables. Furthermore, these techniques are generally utilised to detect very low or trace concentrations, such as in biological samples. The use of high concentrations of analyte might overload the extraction column or the separation column in LC-MS/MS or the ELISA plates, so the response could be a non-linear relationship at high analyte concentrations. Thus, they are not ideal for formulation development where detection of dose-equivalent concentrations is typically required. Therefore, a cost-effective, simple, and accurate quantification method for the peptide at a higher concentration needs to be developed. In this study, a simple and novel HPLC-UV method is proposed and validated using an Analytical Quality by Design (AQbD) approach. The method is first screened and optimised using chromatographic responses including capacity factor, resolution, tailing factor, and theoretical plate counts, fulfilling the International Council for Harmonisation (ICH) Q2 (R1) guidelines. The resultant optimised chromatography conditions utilised 10 mM phosphate buffer at pH 2.5 and acetonitrile as mobile phases, starting at 3% (v/v) acetonitrile and 97% (v/v) buffer and increasing to 9.7% (v/v) acetonitrile and 90.3% (v/v) buffer over 15 min at a flow rate of 1 mL/min at the column temperature of 25 °C. The injection volume is set at 10 µL and the VWD detector wavelength is 220 nm. The method established is suitable for detecting the peptide at a relatively high concentration, with a quantifiable range from 7.8 µg/mL to 2.0 mg/mL. In addition, the use of a relatively simple HPLC-UV approach could significantly reduce costs and allow easier access to quantify the peptide concentration. A limitation of this method is lower sensitivity compared with using LC-MS/MS and ELISA methods but running costs are lower and the methodology is simpler. The method is capable to quantify the peptide in various tested matrix solutions, with successful quantitation of the peptide in samples obtained from in vitro drug release study in PBS and from a chitosan-TPP nanogels formulation. Therefore, the method developed here offers a complementary approach to the existing quantification methods, quantifying this peptide at increased concentrations in simple to intermediately complex matrix solutions, such as HBSS, DMEM and FluoroBrite cell culture media.


Subject(s)
Oligopeptides , Tandem Mass Spectrometry , Acetonitriles , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Oligopeptides/chemistry , Reproducibility of Results , Tandem Mass Spectrometry/methods
3.
Int J Pharm ; 617: 121592, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35182703

ABSTRACT

Sales of substandard and falsified medical products (SF) are rising rapidly everywhere around the globe. The wide and easy access to these products is an alarming issue to the global health systems and undermined the health of patients, especially with the thrive of online commerce. To tackle this threat to public health, new ways to access these products should be identified and detection technologies should be strengthened. The overarching aim of this study was to investigate if herbal supplements sold online claiming to be natural alternatives to Viagra® were amongst these SF medical products and how effective different analytical techniques are in providing information about these products. 3 products which claimed to be herbal supplements for men sexual performance were purchased from an e-commerce platform. Two products were received as unregistered generic sildenafil citrate tablets manufactured in India (and thus different to the products information on the website) while one product was received in the same packaging as shown on the website, claiming to be an herbal product. Nevertheless, all products were proven to contain sildenafil citrate, the active pharmaceutical ingredients in Viagra® after the comprehensive analytical tests. The results elucidated that the quality standards for the unregistered generic sildenafil citrate tablets were fulfilled according to the British Pharmacopeia, but the falsified product failed the quality tests and contained approximately 200 mg sildenafil citrate, which is equivalent to 2-fold of the daily maximum dose. Furthermore, physical characterisations, including powder x-ray diffraction and thermal analysis were performed and revealed that the polymorphic forms of sildenafil citrate were different, demonstrating the importance of employing thermal analysis in addition to the conventional analysis techniques for the substandard and falsified medical products. These techniques provided valuable insights into the physical form of the active ingredient in these products. What is more, the ease with which these SF products were obtained and confirmed to be misleading consumers emphasises the need for tighter regulation for e-commerce websites in line with those enforced on online pharmacies.


Subject(s)
Counterfeit Drugs , Erectile Dysfunction , Counterfeit Drugs/analysis , Dietary Supplements , Erectile Dysfunction/drug therapy , Humans , Male , Sildenafil Citrate , Tablets
4.
Mol Pharm ; 19(2): 602-615, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35061948

ABSTRACT

The physical properties of nanoparticles may affect the uptake mechanism, biodistribution, stability, and other physicochemical properties of drug delivery systems. This study aimed to first develop a model exploring the factors controlling the nanogel physical properties using a single drug (propranolol), followed by an evaluation of whether these models can be applied more generally to a range of drugs. Size, polydispersity, ζ potential, and encapsulation efficiency were investigated using a design of experiment (DOE) approach to optimize formulations by systematically identifying the effects of, and interactions between, parameters associated with nanogel formulation and drug loading. Three formulation factors were selected, namely, chitosan concentration, the ratio between the chitosan and cross-linker─sodium triphosphate─and the ratio between the chitosan and drug. The results indicate that the DOE approach can be used not only to model but also to predict the size and polydispersity index (PDI). To explore the application of these prediction models with other drugs and to identify the relationship between the drug structure and nanogel properties, nanogels loaded with 12 structurally distinct drugs and 6 structurally similar drugs were fabricated at the optimal condition for propranolol in the model. The measured size, PDI, and ζ potential of the nanogels could not be modeled using distinct DOE parameters for dissimilar drugs, indicating that each drug requires a separate analysis. Nevertheless, for drugs with structural similarities, various linear and nonlinear trends were observed in the size, PDI, and ζ potential of nanogels against selected molecular descriptors, indicating that there are indeed relationships between the drug molecular structure and the performance outcomes, which may be modeled and predicted using the DOE approach. In conclusion, the study demonstrates that DOE models can be applied to model and predict the influence of formulation and drug loading on key performance parameters. While distinct models are required for structurally unrelated drugs, it was possible to establish correlations for the drug series investigated, which were based on polarity, hydrophobicity, and polarizability, thereby elucidating the importance of the interactions between the drug and the nanogels based on the nanogel properties and thus deepening the understanding of the drug-loading mechanisms in nanogels.


Subject(s)
Chitosan , Chitosan/chemistry , Drug Delivery Systems , Nanogels , Pharmaceutical Preparations , Tissue Distribution
5.
Trends Cardiovasc Med ; 32(4): 206-218, 2022 05.
Article in English | MEDLINE | ID: mdl-33892101

ABSTRACT

Drug deposition into the intrapericardial space is favourable for achieving localised effects and targeted cardiac delivery owing to its proximity to the myocardium as well as facilitating optimised pharmacokinetic profiles and a reduction in systemic side effects. Access to the pericardium requires invasive procedures but the risks associated with this have been reduced with technological advances, such as combining transatrial and subxiphoid access with different guidance methods. A variety of introducer devices, ranging from needles to loop-catheters, have also been developed and validated in pre-clinical studies investigating intrapericardial delivery of therapeutic agents. Access techniques are generally well-tolerated, self-limiting and safe, although some rare complications associated with certain approaches have been reported. This review covers these access techniques and how they have been applied to the delivery of drugs, cells, and biologicals, demonstrating the potential of intrapericardial delivery for treatments in cardiac arrhythmia, vascular damage, and myocardial infarction.


Subject(s)
Heart Diseases , Heart Diseases/diagnosis , Heart Diseases/therapy , Humans , Myocardium , Pericardium
6.
Nanoscale Adv ; 3(7): 2039-2055, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-36133085

ABSTRACT

Ionic gelation is commonly used to generate nanogels but often results in poor control over size and polydispersity. In this work we present a novel approach to the continuous manufacture of protein-loaded chitosan nanogels using microfluidics whereby we demonstrate high control and uniformity of the product characteristics. Specifically, a coaxial flow reactor (CFR) was employed to control the synthesis of the nanogels, comprising an inner microcapillary of internal diameter (ID) 0.595 mm and a larger outer glass tube of ID 1.6 mm. The CFR successfully facilitated the ionic gelation process via chitosan and lysozyme flowing through the inner microcapillary, while cross-linkers sodium tripolyphosphate (TPP) and 1-ethyl-2-(3-dimethylaminopropyl)-carbodiimide (EDC) flowed through the larger outer tube. In conjunction with the CFR, a four-factor three-level face-centered central composite design (CCD) was used to ascertain the relationship between various factors involved in nanogel production and their responses. Specifically, four factors including chitosan concentration, TPP concentration, flow ratio and lysozyme concentration were investigated for their effects on three responses (size, polydispersity index (PDI) and encapsulation efficiency (% EE)). A desirability function was applied to identify the optimum parameters to formulate nanogels in the CFR with ideal characteristics. Nanogels prepared using the optimal parameters were successfully produced in the nanoparticle range at 84 ± 4 nm, showing a high encapsulation efficiency of 94.6 ± 2.9% and a high monodispersity of 0.26 ± 0.01. The lysis activity of the protein lysozyme was significantly enhanced in the nanogels at 157.6% in comparison to lysozyme alone. Overall, the study has demonstrated that the CFR is a viable method for the synthesis of functional nanogels containing bioactive molecules.

7.
Drug Deliv ; 26(1): 1115-1124, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31735095

ABSTRACT

Prostate cancer is a leading cause of death in men and despite improved surgical procedures that aid tumor resection, the risk of recurrence after surgery as a result of positive resection margins remains significant. Adjuvant chemotherapy is often required but this is associated with toxicity. Improved ways of delivering highly toxic chemotherapeutic drugs in a more controlled and targeted manner after the prostate has been removed during surgery could reduce the risk of recurrence and avoid systemic toxicity. The aim of this study was to develop a novel drug-device combination tissue scaffold that can be used to deliver the chemotherapeutic agent, docetaxel, into the tissue cavity that is created following radical prostatectomy. The device component investigated consisted of highly porous, poly(dl-lactide-co-glycolide) microparticles made using thermally induced phase separation. A facile method was established for loading docetaxel with high efficiency within one hour. Sustained drug release was observed from the microparticles when placed into a dynamic system simulating tissue perfusion. The drug released from the microparticles into perfusates collected at regular time intervals inhibited colony formation and exhibited sustained cytotoxicity against 3D spheroids of PC3 prostate cancer cells over 10 days. In conclusion, this study demonstrates the concept of combining docetaxel with the biodegradable microparticles at the point of care is technically feasible for achieving an effective drug-device combination tissue scaffold. This approach could provide an effective new approach for delivering adjuvant chemotherapy following radical prostatectomy.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Prostate/drug effects , Tissue Scaffolds/chemistry , Cell Line, Tumor , Chemotherapy, Adjuvant/methods , Docetaxel/administration & dosage , Docetaxel/chemistry , Humans , Male , PC-3 Cells , Prostatectomy/methods , Prostatic Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...