Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 337: 122571, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37722478

ABSTRACT

Biochar usage in soil remediation has turned out to be an enticing topic recently. Biochar, a product formed by pyrolysis of organic waste, which is rich in carbon, has the aptitude to ameliorate climate change by sequestering carbon while also enhancing soil quality and crop yields. Two-edged implications of biochar on soil amendment are still being discussed yet, clarity on the long-term implications of biochar on soil health and the environment is not yet achieved. As a result, it is crucial to systematically uncover the pertinent information regarding biochar remediation, as this can serve as a roadmap for future research on using biochar to remediate contaminated soils in mining regions. This review endeavors to bring forth run thoroughly the latest state of research on the use of biochar in soil remediation, along with its potential benefits, limitations, challenges, and future scope. By synthesizing existing literature on biochar soil remediation, this review aims to provide insights into the potential of biochar as a sustainable solution for soil remediation. Specifically, this review will highlight the key factors that influence the effectiveness of biochar for soil remediation and the potential risks associated with its use, as well as the current gaps in knowledge and future research directions.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Soil Pollutants , Soil , Soil Pollutants/analysis , Charcoal
2.
Environ Sci Pollut Res Int ; 25(29): 29433-29450, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30128975

ABSTRACT

This study proposed an integrated modelling framework and a modified method for evaluating non-carcinogenic health risks from nonylphenol (NP)-contaminated food consumption. First, a fugacity-based multimedia model and a food web bioaccumulation model were adopted to predict the distribution of NP in the Can Giuoc river and the bioaccumulative concentrations in biota. Next, local people's exposure to NP was quantified using the accumulative concentrations and the data of fishery products intake from a questionnaire survey distributed among 203 local people. Then, human health risk was evaluated in terms of fishery products intake and intake frequency which were each derived from the same survey. The study revealed that human health risk would exist, although the obtained bioaccumulation factors for the consumed organisms were lower than the bioaccumulation criteria. Consuming 141 g or more per serving of riverine food products resulted in an average NP intake exceeding 0.005 mg/kg of body weight per day among 45-73% of the local adults, of whom pregnant women or young and potential mothers accounted for 10-21%. Seventy-nine percent was the highest rate of the population to be at risk under medium river flow rate when food-intake amount and intake frequency were taken into account. Ingesting 70 g per serving of more contaminated species, such as whiteleg shrimp and small fish, less frequently could lead to less risk exposure than ingesting 267 g per serving of less contaminated species, such as sand goby and climbing pearch, more frequently. By coupling food intake with intake frequency, the modified method enables the studying of human health risk from NP-contaminated food consumption to be conducted with more care, and so benefits risk communication at local level.


Subject(s)
Dietary Exposure/adverse effects , Food Contamination , Phenols/toxicity , Risk Assessment/methods , Water Pollutants, Chemical/toxicity , Adolescent , Adult , Animals , Diet Surveys , Female , Fish Products/adverse effects , Food Chain , Humans , Male , Middle Aged , Phenols/analysis , Pregnancy , Rivers , Vietnam , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...