Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Commun Med (Lond) ; 4(1): 38, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499690

ABSTRACT

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a familial cardiac disease associated with ventricular arrhythmias and an increased risk of sudden cardiac death. Currently, there are no approved treatments that address the underlying genetic cause of this disease, representing a significant unmet need. Mutations in Plakophilin-2 (PKP2), encoding a desmosomal protein, account for approximately 40% of ARVC cases and result in reduced gene expression. METHODS: Our goal is to examine the feasibility and the efficacy of adeno-associated virus 9 (AAV9)-mediated restoration of PKP2 expression in a cardiac specific knock-out mouse model of Pkp2. RESULTS: We show that a single dose of AAV9:PKP2 gene delivery prevents disease development before the onset of cardiomyopathy and attenuates disease progression after overt cardiomyopathy. Restoration of PKP2 expression leads to a significant extension of lifespan by restoring cellular structures of desmosomes and gap junctions, preventing or halting decline in left ventricular ejection fraction, preventing or reversing dilation of the right ventricle, ameliorating ventricular arrhythmia event frequency and severity, and preventing adverse fibrotic remodeling. RNA sequencing analyses show that restoration of PKP2 expression leads to highly coordinated and durable correction of PKP2-associated transcriptional networks beyond desmosomes, revealing a broad spectrum of biological perturbances behind ARVC disease etiology. CONCLUSIONS: We identify fundamental mechanisms of PKP2-associated ARVC beyond disruption of desmosome function. The observed PKP2 dose-function relationship indicates that cardiac-selective AAV9:PKP2 gene therapy may be a promising therapeutic approach to treat ARVC patients with PKP2 mutations.


Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heart disease that leads to abnormal heartbeats and a higher risk of sudden cardiac death. ARVC is often caused by changes in a gene called PKP2, that then makes less PKP2 protein. PKP2 protein is important for the normal structure and function of the heart. Human ARVC characteristics can be mimicked in a mouse model missing this gene. Given no therapeutic option, our goal was to test if adding a working copy of PKP2 gene in the heart of this mouse model, using a technique called gene therapy that can deliver genes to cells, could improve heart function. Here, we show that a single dose of PKP2 gene therapy can improve heart function and heartbeats as well as extend lifespan in mice. PKP2 gene therapy may be a promising approach to treat ARVC patients with PKP2 mutations.

2.
J Biol Chem ; 299(3): 102996, 2023 03.
Article in English | MEDLINE | ID: mdl-36764520

ABSTRACT

SOX2 and SOX15 are Sox family transcription factors enriched in embryonic stem cells (ESCs). The role of SOX2 in activating gene expression programs essential for stem cell self-renewal and acquisition of pluripotency during somatic cell reprogramming is well-documented. However, the contribution of SOX15 to these processes is unclear and often presumed redundant with SOX2 largely because overexpression of SOX15 can partially restore self-renewal in SOX2-deficient ESCs. Here, we show that SOX15 contributes to stem cell maintenance by cooperating with ESC-enriched transcriptional coactivators to ensure optimal expression of pluripotency-associated genes. We demonstrate that SOX15 depletion compromises reprogramming of fibroblasts to pluripotency which cannot be compensated by SOX2. Ectopic expression of SOX15 promotes the reversion of a postimplantation, epiblast stem cell state back to a preimplantation, ESC-like identity even though SOX2 is expressed in both cell states. We also uncover a role of SOX15 in lineage specification, by showing that loss of SOX15 leads to defects in commitment of ESCs to neural fates. SOX15 promotes neural differentiation by binding to and activating a previously uncharacterized distal enhancer of a key neurogenic regulator, Hes5. Together, these findings identify a multifaceted role of SOX15 in induction and maintenance of pluripotency and neural differentiation.


Subject(s)
Gene Expression Regulation , Transcription Factors , Cell Differentiation/genetics , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Transcription Factors/metabolism , Repressor Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
3.
Sci Transl Med ; 14(652): eabl5654, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35857625

ABSTRACT

Dilated cardiomyopathy (DCM) is characterized by reduced cardiac output, as well as thinning and enlargement of left ventricular chambers. These characteristics eventually lead to heart failure. Current standards of care do not target the underlying molecular mechanisms associated with genetic forms of heart failure, driving a need to develop novel therapeutics for DCM. To identify candidate therapeutics, we developed an in vitro DCM model using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) deficient in B-cell lymphoma 2 (BCL2)-associated athanogene 3 (BAG3). With these BAG3-deficient iPSC-CMs, we identified cardioprotective drugs using a phenotypic screen and deep learning. From a library of 5500 bioactive compounds and siRNA validation, we found that inhibiting histone deacetylase 6 (HDAC6) was cardioprotective at the sarcomere level. We translated this finding to a BAG3 cardiomyocyte-knockout (BAG3cKO) mouse model of DCM, showing that inhibiting HDAC6 with two isoform-selective inhibitors (tubastatin A and a novel inhibitor TYA-018) protected heart function. In BAG3cKO and BAG3E455K mice, HDAC6 inhibitors improved left ventricular ejection fraction and reduced left ventricular diameter at diastole and systole. In BAG3cKO mice, TYA-018 protected against sarcomere damage and reduced Nppb expression. Based on integrated transcriptomics and proteomics and mitochondrial function analysis, TYA-018 also enhanced energetics in these mice by increasing expression of targets associated with fatty acid metabolism, protein metabolism, and oxidative phosphorylation. Our results demonstrate the power of combining iPSC-CMs with phenotypic screening and deep learning to accelerate drug discovery, and they support developing novel therapies that address underlying mechanisms associated with heart disease.


Subject(s)
Cardiomyopathy, Dilated , Deep Learning , Heart Failure , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/drug therapy , Cardiomyopathy, Dilated/genetics , Disease Models, Animal , Heart Failure/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Mice , Myocytes, Cardiac/metabolism , Stroke Volume , Ventricular Function, Left
4.
Sci Adv ; 7(44): eabk2775, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34714667

ABSTRACT

OCT4 and SOX2 confer pluripotency by recruiting coactivators to activate stem cell­specific transcription. However, the composition of coactivator complexes and their roles in maintaining stem cell fidelity remain unclear. Here, we report the ATP-binding cassette subfamily F member 1 (ABCF1) as a coactivator for OCT4/SOX2 critical for stem cell self-renewal. The intrinsically disordered low-complexity domain (LCD) of ABCF1 contributes to phase separation in vitro and transcriptional activation of pluripotency genes by mediating multivalent interactions with SOX2 and co-dependent coactivators XPC and DKC1. These LCD-driven transcription factor­coactivator interactions critical for pluripotency gene expression are disrupted by DNA damage, likely due to LCD-dependent binding of ABCF1 to damage-generated intracellular DNA fragments instead of SOX2. This study identifies a transcriptional coactivator that uses its LCD to form selective multivalent interactions to regulate stem cell self-renewal and exit from pluripotency when genome integrity is compromised.

5.
Elife ; 102021 08 02.
Article in English | MEDLINE | ID: mdl-34338636

ABSTRACT

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.


Subject(s)
Cardiotoxicity/etiology , Deep Learning , Heart/drug effects , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Drug Evaluation, Preclinical/methods
6.
Elife ; 82019 06 17.
Article in English | MEDLINE | ID: mdl-31205001

ABSTRACT

Achieving a quantitative and predictive understanding of 3D genome architecture remains a major challenge, as it requires quantitative measurements of the key proteins involved. Here, we report the quantification of CTCF and cohesin, two causal regulators of topologically associating domains (TADs) in mammalian cells. Extending our previous imaging studies (Hansen et al., 2017), we estimate bounds on the density of putatively DNA loop-extruding cohesin complexes and CTCF binding site occupancy. Furthermore, co-immunoprecipitation studies of an endogenously tagged subunit (Rad21) suggest the presence of cohesin dimers and/or oligomers. Finally, based on our cell lines with accurately measured protein abundances, we report a method to conveniently determine the number of molecules of any Halo-tagged protein in the cell. We anticipate that our results and the established tool for measuring cellular protein abundances will advance a more quantitative understanding of 3D genome organization, and facilitate protein quantification, key to comprehend diverse biological processes.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone , Animals , CCCTC-Binding Factor , Cell Cycle Proteins , Humans , Cohesins
7.
Genes Dev ; 31(8): 830-844, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28512237

ABSTRACT

Faithful resetting of the epigenetic memory of a somatic cell to a pluripotent state during cellular reprogramming requires DNA methylation to silence somatic gene expression and dynamic DNA demethylation to activate pluripotency gene transcription. The removal of methylated cytosines requires the base excision repair enzyme TDG, but the mechanism by which TDG-dependent DNA demethylation occurs in a rapid and site-specific manner remains unclear. Here we show that the XPC DNA repair complex is a potent accelerator of global and locus-specific DNA demethylation in somatic and pluripotent stem cells. XPC cooperates with TDG genome-wide to stimulate the turnover of essential intermediates by overcoming slow TDG-abasic product dissociation during active DNA demethylation. We further establish that DNA demethylation induced by XPC expression in somatic cells overcomes an early epigenetic barrier in cellular reprogramming and facilitates the generation of more robust induced pluripotent stem cells, characterized by enhanced pluripotency-associated gene expression and self-renewal capacity. Taken together with our previous studies establishing the XPC complex as a transcriptional coactivator, our findings underscore two distinct but complementary mechanisms by which XPC influences gene regulation by coordinating efficient TDG-mediated DNA demethylation along with active transcription during somatic cell reprogramming.


Subject(s)
Cellular Reprogramming/genetics , DNA Methylation/genetics , DNA-Binding Proteins/metabolism , Pluripotent Stem Cells/physiology , Animals , Embryonic Stem Cells , Epigenesis, Genetic/genetics , Fibroblasts/physiology , Gene Expression Regulation , Genome-Wide Association Study , HEK293 Cells , Humans , Mice , Thymine DNA Glycosylase/genetics , Thymine DNA Glycosylase/metabolism
8.
Elife ; 32014 Nov 19.
Article in English | MEDLINE | ID: mdl-25407680

ABSTRACT

Acquisition of pluripotency is driven largely at the transcriptional level by activators OCT4, SOX2, and NANOG that must in turn cooperate with diverse coactivators to execute stem cell-specific gene expression programs. Using a biochemically defined in vitro transcription system that mediates OCT4/SOX2 and coactivator-dependent transcription of the Nanog gene, we report the purification and identification of the dyskerin (DKC1) ribonucleoprotein complex as an OCT4/SOX2 coactivator whose activity appears to be modulated by a subset of associated small nucleolar RNAs (snoRNAs). The DKC1 complex occupies enhancers and regulates the expression of key pluripotency genes critical for self-renewal in embryonic stem (ES) cells. Depletion of DKC1 in fibroblasts significantly decreased the efficiency of induced pluripotent stem (iPS) cell generation. This study thus reveals an unanticipated transcriptional role of the DKC1 complex in stem cell maintenance and somatic cell reprogramming.

9.
Cell Stem Cell ; 10(3): 299-311, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22385657

ABSTRACT

Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts). We also developed quantitative clonal analysis methods for expansion and differentiation of cNeoblast descendants that, together with RNAi, revealed gene roles in stem cell biology. Genes encoding two zinc finger proteins, Vasa, a LIM domain protein, Sox and Jun-like transcription factors, two candidate RNA-binding proteins, a Setd8-like protein, and PRC2 (Polycomb) were required for proliferative expansion and/or differentiation of cNeoblast-derived clones. These findings suggest that planarian stem cells utilize molecular mechanisms found in germ cells and other pluripotent cell types and identify genetic regulators of the planarian stem cell system.


Subject(s)
Adult Stem Cells/cytology , Planarians/cytology , Planarians/genetics , Pluripotent Stem Cells/cytology , RNA Interference , Animals , Cell Differentiation , Cell Proliferation , Clone Cells/cytology , Gene Expression Profiling , Microarray Analysis , Planarians/metabolism
10.
Nat Cell Biol ; 13(11): 1353-60, 2011 Oct 23.
Article in English | MEDLINE | ID: mdl-22020437

ABSTRACT

Somatic reprogramming induced by defined transcription factors is a low-efficiency process that is enhanced by p53 deficiency. So far, p21 is the only p53 target shown to contribute to p53 repression of iPSC (induced pluripotent stem cell) generation, indicating that additional p53 targets may regulate this process. Here, we demonstrate that miR-34 microRNAs (miRNAs), particularly miR-34a, exhibit p53-dependent induction during reprogramming. Mir34a deficiency in mice significantly increased reprogramming efficiency and kinetics, with miR-34a and p21 cooperatively regulating somatic reprogramming downstream of p53. Unlike p53 deficiency, which enhances reprogramming at the expense of iPSC pluripotency, genetic ablation of Mir34a promoted iPSC generation without compromising self-renewal or differentiation. Suppression of reprogramming by miR-34a was due, at least in part, to repression of pluripotency genes, including Nanog, Sox2 and Mycn (also known as N-Myc). This post-transcriptional gene repression by miR-34a also regulated iPSC differentiation kinetics. miR-34b and c similarly repressed reprogramming; and all three miR-34 miRNAs acted cooperatively in this process. Taken together, our findings identified miR-34 miRNAs as p53 targets that play an essential role in restraining somatic reprogramming.


Subject(s)
Cellular Reprogramming/genetics , Gene Expression Regulation, Developmental , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/metabolism , Animals , Cell Differentiation , Cells, Cultured , Coculture Techniques , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Genes, myc , Homeodomain Proteins/genetics , Kinetics , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Mice, Transgenic , MicroRNAs/genetics , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , RNA Interference , SOXB1 Transcription Factors/genetics , Teratoma/genetics , Teratoma/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
11.
Science ; 298(5595): 995-1000, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12351674

ABSTRACT

It has been known since 1986 that CD8 T lymphocytes from certain HIV-1-infected individuals who are immunologically stable secrete a soluble factor, termed CAF, that suppresses HIV-1 replication. However, the identity of CAF remained elusive despite an extensive search. By means of a protein-chip technology, we identified a cluster of proteins that were secreted when CD8 T cells from long-term nonprogressors with HIV-1 infection were stimulated. These proteins were identified as alpha-defensin 1, 2, and 3 on the basis of specific antibody recognition and amino acid sequencing. CAF activity was eliminated or neutralized by an antibody specific for human alpha-defensins. Synthetic and purified preparations of alpha-defensins also inhibited the replication of HIV-1 isolates in vitro. Taken together, our results indicate that alpha-defensin 1, 2, and 3 collectively account for much of the anti-HIV-1 activity of CAF that is not attributable to beta-chemokines.


Subject(s)
Antiviral Agents/pharmacology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/physiology , alpha-Defensins/physiology , Amino Acid Sequence , Antibodies, Monoclonal , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , CD8-Positive T-Lymphocytes/chemistry , Cells, Cultured , Chemokines, CC/immunology , Chemokines, CC/physiology , HIV Infections/virology , HIV Long-Term Survivors , HIV-1/drug effects , Humans , Mass Spectrometry , Molecular Sequence Data , Neutrophils/chemistry , Neutrophils/immunology , Protein Array Analysis , Virus Replication , alpha-Defensins/chemistry , alpha-Defensins/isolation & purification , alpha-Defensins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...