Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12218, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806555

ABSTRACT

Although the use of the tyrosine kinase inhibitors (TKIs) has been proved that it can save live in a cancer treatment, the currently used drugs bring in many undesirable side-effects. Therefore, the search for new drugs and an evaluation of their efficiency are intensively carried out. Recently, a series of eighteen imidazole[1,5-a]pyridine derivatives were synthetized by us, and preliminary analyses pointed out their potential to be an important platform for pharmaceutical development owing to their promising actions as anticancer agents and enzyme (kinase, HIV-protease,…) inhibitors. In the present theoretical study, we further analyzed their efficiency in using a realistic scenario of computational drug design. Our protocol has been developed to not only observe the atomistic interaction between the EGFR protein and our 18 novel compounds using both umbrella sampling and steered molecular dynamics simulations, but also determine their absolute binding free energies. Calculated properties of the 18 novel compounds were in detail compared with those of two known drugs, erlotinib and osimertinib, currently used in cancer treatment. Inspiringly the simulation results promote three imidazole[1,5-a]pyridine derivatives as promising inhibitors into a further step of clinical trials.


Subject(s)
ErbB Receptors , Imidazoles , Molecular Dynamics Simulation , Protein Kinase Inhibitors , Pyridines , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Erlotinib Hydrochloride/chemistry , Erlotinib Hydrochloride/pharmacology , Drug Design , Molecular Docking Simulation , Protein Binding
2.
Sci Rep ; 14(1): 10475, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714683

ABSTRACT

To ensure that an external force can break the interaction between a protein and a ligand, the steered molecular dynamics simulation requires a harmonic restrained potential applied to the protein backbone. A usual practice is that all or a certain number of protein's heavy atoms or Cα atoms are fixed, being restrained by a small force. This present study reveals that while fixing both either all heavy atoms and or all Cα atoms is not a good approach, while fixing a too small number of few atoms sometimes cannot prevent the protein from rotating under the influence of the bulk water layer, and the pulled molecule may smack into the wall of the active site. We found that restraining the Cα atoms under certain conditions is more relevant. Thus, we would propose an alternative solution in which only the Cα atoms of the protein at a distance larger than 1.2 nm from the ligand are restrained. A more flexible, but not too flexible, protein will be expected to lead to a more natural release of the ligand.


Subject(s)
Molecular Dynamics Simulation , Protein Binding , Proteins , Ligands , Proteins/chemistry , Proteins/metabolism , Protein Conformation
3.
J Phys Chem B ; 124(26): 5338-5349, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32484689

ABSTRACT

Accurate determination of the binding affinity of the ligand to the receptor remains a difficult problem in computer-aided drug design. Here, we study and compare the efficiency of Jarzynski's equality (JE) combined with steered molecular dynamics and the linear interaction energy (LIE) method by assessing the binding affinity of 23 small compounds to six receptors, including ß-lactamase, thrombin, factor Xa, HIV-1 protease (HIV), myeloid cell leukemia-1, and cyclin-dependent kinase 2 proteins. It was shown that Jarzynski's nonequilibrium binding free energy ΔGneqJar correlates with the available experimental data with the correlation levels R = 0.89, 0.86, 0.83, 0.80, 0.83, and 0.81 for six data sets, while for the binding free energy ΔGLIE obtained by the LIE method, we have R = 0.73, 0.80, 0.42, 0.23, 0.85, and 0.01. Therefore, JE is recommended to be used for ranking binding affinities as it provides accurate and robust results. In contrast, LIE is not as reliable as JE, and it should be used with caution, especially when it comes to new systems.


Subject(s)
Drug Design , Molecular Dynamics Simulation , Entropy , Ligands , Thermodynamics
4.
ACS Chem Neurosci ; 11(5): 715-729, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32011847

ABSTRACT

The formation and accumulation of amyloid aggregates are the phenomena that accompany amyloidoses, which are currently untreatable and include Alzheimer's and Parkinson's diseases, diabetes mellitus, non-neuropathic lysozyme systemic amyloidosis, and others. One of the very promising therapeutic approaches seems to be an inhibition of amyloid formation and/or clearance of amyloid aggregates. Small molecules have a great potential to interfere with amyloid fibrillation of peptides and polypeptides, which can be improved by connection of cyclic structures into single multicyclic molecules and their dimerization. In our study, we focused on heterodimers consisting of 7-methoxytacrine (7-MEOTA) and 2-aminobenzothiazole (BTZ) parent molecules connected by an aliphatic linker. Using in vitro and in silico methods, we investigated the ability of studied compounds to inhibit the amyloid aggregation of hen egg white lysozyme. Heterodimerization led to significant improvement of inhibitory activity compared to that of the parent molecules. The efficiency of the heterodimers varied; the most effective inhibitor contained the longest linker, eight carbons long. We suggest that binding of a heterodimer to a lysozyme blocks the interaction between the ß-domain and C-helix region essential for the formation of amyloid cross-ß structure. Elongation of the linker ultimately enhances the compound's ability to prevent this interaction by allowing the BTZ part of the heterodimer to bind more effectively, increasing the compound's binding affinity, and also by greater steric obstruction. This study represents an important contribution to the recent rational design of potential lead small molecules with anti-amyloid properties, and the heterodimers studied are prospective candidates for the treatment of systemic lysozyme amyloidosis and other amyloid-related diseases.


Subject(s)
Amyloid , Amyloidosis , Amyloidogenic Proteins , Humans , Prospective Studies , Tacrine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...