Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(20): e2307129, 2024 May.
Article in English | MEDLINE | ID: mdl-38493497

ABSTRACT

Recently mapped transcriptomic landscapes reveal the extent of heterogeneity in cancer-associated fibroblasts (CAFs) beyond previously established single-gene markers. Functional analyses of individual CAF subsets within the tumor microenvironment are critical to develop more accurate CAF-targeting therapeutic strategies. However, there is a lack of robust preclinical models that reflect this heterogeneity in vitro. In this study, single-cell RNA sequencing datasets acquired from head and neck squamous cell carcinoma tissues to predict microenvironmental and cellular features governing individual CAF subsets are leveraged. Some of these features are then incorporated into a tunable hyaluronan-based hydrogel system to culture patient-derived CAFs. Control over hydrogel degradability and integrin adhesiveness enabled derivation of the predominant myofibroblastic and inflammatory CAF subsets, as shown through changes in cell morphology and transcriptomic profiles. Last, using these hydrogel-cultured CAFs, microtubule dynamics are identified, but not actomyosin contractility, as a key mediator of CAF plasticity. The recapitulation of CAF heterogeneity in vitro using defined hydrogels presents unique opportunities for advancing the understanding of CAF biology and evaluation of CAF-targeting therapeutics.


Subject(s)
Cancer-Associated Fibroblasts , Hydrogels , Tumor Microenvironment , Hydrogels/chemistry , Humans , Tumor Microenvironment/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Bioengineering/methods , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism
2.
Biomaterials ; 305: 122460, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246018

ABSTRACT

Ex vivo patient-derived tumor slices (PDTS) are currently limited by short-term viability in culture. Here, we show how bioengineered hydrogels enable the identification of key matrix parameters that significantly enhance PDTS viability compared to conventional culture systems. As demonstrated using single-cell RNA sequencing and high-dimensional flow cytometry, hydrogel-embedded PDTS tightly preserved cancer, cancer-associated fibroblast, and various immune cell populations and subpopulations in the corresponding original tumor. Cell-cell communication networks within the tumor microenvironment, including immune checkpoint ligand-receptor interactions, were also maintained. Remarkably, our results from a co-clinical trial suggest hydrogel-embedded PDTS may predict sensitivity to immune checkpoint inhibitors (ICIs) in head and neck cancer patients. Further, we show how these longer term-cultured tumor explants uniquely enable the sampling and detection of temporal evolution in molecular readouts when treated with ICIs. By preserving the compositional heterogeneity and complexity of patient tumors, hydrogel-embedded PDTS provide a valuable tool to facilitate experiments targeting the tumor microenvironment.


Subject(s)
Head and Neck Neoplasms , Hydrogels , Humans , Hydrogels/pharmacology , Drug Evaluation , Tumor Microenvironment
3.
Biomaterials ; 284: 121527, 2022 05.
Article in English | MEDLINE | ID: mdl-35483200

ABSTRACT

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the second leading cause of cancer worldwide. Despite approvals of several therapeutics to treat advanced HCC in the past few years, the impact of anti-angiogenic treatment on HCC patient overall survival remains limited. This suggests there may be alternative, perfusion-independent roles of endothelial cells that support tumor progression. Thus, we leveraged a well-defined hydrogel system to establish co-culture models to mimic and characterize the angiocrine crosstalk between HCC and endothelial cells in vitro. Co-cultures of HCC cell lines or patient-derived xenograft organoids with endothelial cells exhibited the upregulation of MCP-1, IL-8 and CXCL16, suggesting that the HCC-endothelial interactions established in our models recapitulate known angiocrine signaling. Additionally, by subjecting co-cultures and mono-cultures to RNA sequencing, transcriptomic analysis revealed an upregulation in the expression of genes associated with tumor necrosis factor (TNF) signaling, such as that of chemokines, suggesting that endothelial cells induce HCC cells to generate an inflammatory microenvironment by recruiting immune cells. Finally, HCC-endothelial angiocrine crosstalk in the co-culture models polarized macrophages towards a pro-inflammatory and pro-angiogenic phenotype, paralleling a tumor-associated macrophage subset previously reported in HCC. Together, these findings suggest that these HCC-endothelial co-culture models may serve as important models to understand and target the interplay between angiogenesis and the immune milieu.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Coculture Techniques , Endothelial Cells/metabolism , Humans , Liver Neoplasms/pathology , Organoids/metabolism , Tumor Microenvironment
4.
Adv Drug Deliv Rev ; 175: 113791, 2021 08.
Article in English | MEDLINE | ID: mdl-33965462

ABSTRACT

In the past decade, immune checkpoint inhibitors (ICI) have proven to be tremendously effective for a subset of cancer patients. However, it is difficult to predict the response of individual patients and efforts are now directed at understanding the mechanisms of ICI resistance. Current models of patient tumors poorly recapitulate the immune contexture, which describe immune parameters that are associated with patient survival. In this Review, we discuss parameters that influence the induction of different immune contextures found within tumors and how engineering strategies may be leveraged to recapitulate these contextures to develop the next generation of immune-competent patient-derived in vitro models.


Subject(s)
Immunotherapy/methods , Tissue Engineering/methods , Tumor Cells, Cultured/immunology , Animals , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...