Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Invest Dermatol ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38458428

ABSTRACT

The barrier function of skin epidermis is crucial for our bodies to interface with the environment. Because epidermis continuously turns over throughout the lifetime, this barrier must be actively maintained by regeneration. Although several transcription factors have been established as essential activators in epidermal differentiation, it is unclear whether additional factors remain to be identified. In this study, we show that CASZ1, a multi zinc-finger transcription factor previously characterized in nonepithelial cell types, shows highest expression in skin epidermis. CASZ1 expression is upregulated during epidermal terminal differentiation. In addition, CASZ1 expression is impaired in several skin disorders with impaired barrier function, such as atopic dermatitis, psoriasis, and squamous cell carcinoma. Using transcriptome profiling coupled with RNA interference, we identified 674 differentially expressed genes with CASZ1 knockdown. Downregulated genes account for 91.2% of these differentially expressed genes and were enriched for barrier function. In organotypic epidermal regeneration, CASZ1 knockdown promoted proliferation and strongly impaired multiple terminal differentiation markers. Mechanistically, we found that CASZ1 upregulation in differentiation requires the action of both the master transcription factor, p63, and the histone acetyltransferase, p300. Taken together, our findings identify CASZ1 as an essential activator of epidermal differentiation, paving the way for future studies understanding of CASZ1 roles in skin disease.

2.
Cell Genom ; 4(1): 100471, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38190100

ABSTRACT

PBRM1 is frequently mutated in cancers of epithelial origin. How PBRM1 regulates normal epithelial homeostasis, prior to cancer initiation, remains unclear. Here, we show that PBRM1's gene regulatory roles differ drastically between cell states, leveraging human skin epithelium (epidermis) as a research platform. In progenitors, PBRM1 predominantly functions to repress terminal differentiation to sustain progenitors' regenerative potential; in the differentiation state, however, PBRM1 switches toward an activator. Between these two cell states, PBRM1 retains its genomic binding but associates with differential interacting proteins. Our targeted screen identified the E3 SUMO ligase PIAS1 as a key interactor. PIAS1 co-localizes with PBRM1 on chromatin to directly repress differentiation genes in progenitors, and PIAS1's chromatin binding drastically diminishes in differentiation. Furthermore, SUMOylation contributes to PBRM1's repressive function in progenitor maintenance. Thus, our findings highlight PBRM1's cell-state-specific regulatory roles influenced by its protein interactome despite its stable chromatin binding.


Subject(s)
Multiomics , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Gene Expression Regulation , Sumoylation , Chromatin/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Protein Inhibitors of Activated STAT/genetics
3.
Commun Biol ; 6(1): 664, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353594

ABSTRACT

Self-renewing somatic tissues rely on progenitors to support the continuous tissue regeneration. The gene regulatory network maintaining progenitor function remains incompletely understood. Here we show that NUP98 and RAE1 are highly expressed in epidermal progenitors, forming a separate complex in the nucleoplasm. Reduction of NUP98 or RAE1 abolishes progenitors' regenerative capacity, inhibiting proliferation and inducing premature terminal differentiation. Mechanistically, NUP98 binds on chromatin near the transcription start sites of key epigenetic regulators (such as DNMT1, UHRF1 and EZH2) and sustains their expression in progenitors. NUP98's chromatin binding sites are co-occupied by HDAC1. HDAC inhibition diminishes NUP98's chromatin binding and dysregulates NUP98 and RAE1's target gene expression. Interestingly, HDAC inhibition further induces NUP98 and RAE1 to localize interdependently to the nucleolus. These findings identified a pathway in progenitor maintenance, where HDAC activity directs the high levels of NUP98 and RAE1 to directly control key epigenetic regulators, escaping from nucleolar aggregation.


Subject(s)
Chromatin , Nucleocytoplasmic Transport Proteins , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Chromatin/genetics , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Binding Sites
4.
Nat Commun ; 13(1): 4408, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906225

ABSTRACT

Progenitors in epithelial tissues, such as human skin epidermis, continuously make fate decisions between self-renewal and differentiation. Here we show that the Super Elongation Complex (SEC) controls progenitor fate decisions by directly suppressing a group of "rapid response" genes, which feature high enrichment of paused Pol II in the progenitor state and robust Pol II elongation in differentiation. SEC's repressive role is dependent on the AFF1 scaffold, but not AFF4. In the progenitor state, AFF1-SEC associates with the HEXIM1-containing inactive CDK9 to suppress these rapid-response genes. A key rapid-response SEC target is ATF3, which promotes the upregulation of differentiation-activating transcription factors (GRHL3, OVOL1, PRDM1, ZNF750) to advance terminal differentiation. SEC peptidomimetic inhibitors or PKC signaling activates CDK9 and rapidly induces these transcription factors within hours in keratinocytes. Thus, our data suggest that the activity switch of SEC-associated CDK9 underlies the initial processes bifurcating progenitor fates between self-renewal and differentiation.


Subject(s)
Positive Transcriptional Elongation Factor B , Transcriptional Elongation Factors , Cyclin-Dependent Kinase 9/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epidermis/metabolism , Humans , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II , RNA-Binding Proteins , Transcription Factors/genetics , Transcriptional Elongation Factors/metabolism , Tumor Suppressor Proteins
5.
Development ; 146(19)2019 09 30.
Article in English | MEDLINE | ID: mdl-31570369

ABSTRACT

The BAF (SWI/SNF) chromatin remodeling complex plays a crucial role in modulating spatiotemporal gene expression during mammalian development. Although its remodeling activity was characterized in vitro decades ago, the complex actions of BAF in vivo have only recently begun to be unraveled. In living cells, BAF only binds to and remodels a subset of genomic locations. This selectivity of BAF genomic targeting is crucial for cell-type specification and for mediating precise responses to environmental signals. Here, we provide an overview of the distinct molecular mechanisms modulating BAF chromatin binding, including its combinatory assemblies, DNA/histone modification-binding modules and post-translational modifications, as well as its interactions with proteins, RNA and lipids. This Review aims to serve as a primer for future studies to decode the actions of BAF in developmental processes.


Subject(s)
Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Embryonic Development/genetics , Genome , Animals , Gene Expression Regulation, Developmental , Humans , Transcription Factors/metabolism
6.
Am J Med Genet A ; 173(9): 2415-2421, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28742282

ABSTRACT

Multiple Epiphyseal Dysplasia (MED) is a relatively mild skeletal dysplasia characterized by mild short stature, joint pain, and early-onset osteoarthropathy. Dominantly inherited mutations in COMP, MATN3, COL9A1, COL9A2, and COL9A3, and recessively inherited mutations in SLC26A2, account for the molecular basis of disease in about 80-85% of the cases. In two families with recurrent MED of an unknown molecular basis, we used exome sequencing and candidate gene analysis to identify homozygosity for recessively inherited missense mutations in CANT1, which encodes calcium-activated nucleotidase 1. The MED phenotype is thus allelic to the more severe Desbuquois dysplasia phenotype and the results identify CANT1 as a second locus for recessively inherited MED.


Subject(s)
Genes, Recessive , Nucleotidases/genetics , Osteochondrodysplasias/genetics , Adult , Base Sequence , Child , Child, Preschool , Exome/genetics , Female , Humans , Male , Mutation, Missense/genetics , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/physiopathology , Pedigree , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...