Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 471: 134406, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688218

ABSTRACT

Sea disposal of mine tailings in fjord ecosystems is an important coastal management issue in Norway and occurs at the land-sea interface. Here we studied accumulation of heavy metals in brown crab (Cancer pagurus) and seafloor sediment from Jøssingfjord, Norway during 2018 to evaluate long-term, legacy pollution effects of coastal mine tailing sea disposal activities. Nickel and copper sediment pollution in the mine tailing sea disposal area was classified as moderate and severe, respectively, under Norwegian environmental quality standards, and highlights the persistent hazard and legacy impacts of heavy metals in these impacted fjord ecosystems. Mercury, zinc, and arsenic had stronger affinities to brown crab muscle likely due to the presence of thiols, and availability of metal binding sites. Our multi-isotopic composition data showed that lead isotopes were the most useful source apportionment tool for this fjord. Overall, our study highlights the importance and value of measuring several different heavy metals and multiple isotopic signatures in different crab organs and seafloor sediment to comprehensively evaluate fjord pollution and kinetic uptake dynamics. Brown crabs were suitable eco-indicators of benthic ecosystem heavy metal pollution in a fjord ecosystem still experiencing short- and long-term physical and chemical impacts from coastal mining sea disposal activities.


Subject(s)
Brachyura , Environmental Monitoring , Geologic Sediments , Metals, Heavy , Mining , Water Pollutants, Chemical , Animals , Brachyura/metabolism , Geologic Sediments/chemistry , Geologic Sediments/analysis , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Norway , Ecosystem , Estuaries
2.
Environ Res ; 252(Pt 4): 119021, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38685293

ABSTRACT

Demand for n-3 polyunsaturated fatty acids (n-3 PUFAs) exceeds supply. Large-scale studies on effects of season and geography of n-3 PUFAs in marine fish from the Northeast Atlantic Ocean (NEAO) may be used to optimize utilization and improve nutrition security. Using a sinusoid model, seasonal cycles of n-3 PUFAs were determined and found to be species-specific and clearly pronounced for the pelagic zooplankton feeding species. The Greenland halibut showed very little seasonal variation. The n-3 PUFA content in North Sea autumn-spawning (NSAS) herring peaked in summer, while Norwegian spring-spawning (NSS) herring and mackerel had their peak in autumn. A time shift of peaks in n-3 PUFAs between the two herring stocks was detected, likely due to different spawning strategies in addition to a delay of n-3 PUFAs flux in the northern regions of the NEAO. This study demonstrates that consideration of nutrient contents, such as n-3 PUFAs, when organizing and structuring fishery approaches may improve overall nutritional yield. Based on total annual Norwegian fish landings and seasonal variation in n-3 PUFA contents, n-3 PUFAs yield could theoretically be increased from 13.79 kilo ton per year from the current fishing tactics, to 15.54 if the pelagic species were only caught during the time of their seasonal n-3 PUFA peaks. Pelagic fish is a good source for dietary n-3 PUFAs, but harvest timing will also influence n-3 PUFAs intake by human consumers. One portion of fatty fish harvested during winter/spring may not meet the weekly intake reference nutritional guidelines for n-3 PUFAs. Marine n-3 PUFAs yields also varied geographically and decreased southwards, with the lowest values in Skagerrak. This study can serve as a model to understand patterns of reproductive cycles and geographical distribution of n-3 PUFAs in fatty fish from the NEAO and the novel approach may be useful to support sustainable, seasonal fishing programmes for optimization of n-3 PUFAs yields.


Subject(s)
Fatty Acids, Omega-3 , Fishes , Seasons , Animals , Atlantic Ocean , Fatty Acids, Omega-3/analysis , Fishes/metabolism , Models, Biological
3.
Environ Pollut ; 338: 122706, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37821039

ABSTRACT

The Northeast Arctic cod (Gadus morhua) is the world's northernmost stock of Atlantic cod and is of considerable ecological and economic importance. Northeast Arctic cod are widely distributed in the Barents Sea, an environment that supports a high degree of ecosystem resiliency and food web complexity. Here using 121 years of ocean temperature data (1900-2020), 41 years of sea ice extent information (1979-2020) and 27 years of total mercury (Hg) fillet concentration data (1994-2021, n = 1999, ≥71% Methyl Hg, n = 20) from the Barents Sea ecosystem, we evaluate the effects of climate change dynamics on Hg temporal trends in Northeast Arctic cod. We observed low and consistently stable, Hg concentrations (yearly, least-square means range = 0.022-0.037 mg/kg wet wt.) in length-normalized fish, with a slight decline in the most recent sampling periods despite a significant increase in Barents Sea temperature, and a sharp decline in regional sea ice extent. Overall, our data suggest that recent Arctic amplification of ocean temperature, "Atlantification," and other perturbations of the Barents Sea ecosystem, along with rapidly declining sea ice extent over the last ∼30 years did not translate into major increases or decreases in Hg bioaccumulation in Northeast Arctic cod. Our findings are consistent with similar long-term, temporal assessments of Atlantic cod inhabiting Oslofjord, Norway, and with recent investigations and empirical data for other marine apex predators. This demonstrates that Hg bioaccumulation is highly context specific, and some species may not be as sensitive to current climate change-contaminant interactions as currently thought. Fish Hg bioaccumulation-climate change relationships are highly complex and not uniform, and our data suggest that Hg temporal trends in marine apex predators can vary considerably within and among species, and geographically. Hg bioaccumulation regimes in biota are highly nuanced and likely driven by a suite of other factors such as local diets, sources of Hg, bioenergetics, toxicokinetic processing, and growth and metabolic rates of individuals and taxa, and inputs from anthropogenic activities at varying spatiotemporal scales. Collectively, these findings have important policy implications for global food security, the Minamata Convention on Mercury, and several relevant UN Sustainable Development Goals.


Subject(s)
Gadus morhua , Mercury , Animals , Ecosystem , Mercury/metabolism , Climate Change , Food Chain , Fishes , Arctic Regions
4.
J Hazard Mater ; 457: 131758, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37320901

ABSTRACT

Bioaccumulation of persistent organic pollutants (POPs) in marine fish may pose a health risk to human consumers. Using data from ∼8400 individuals of 15 fish species collected in the North-East Atlantic Ocean (NEAO), we assessed concentrations of individual POP congeners, including dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). POPs analyses were performed with accredited methods using high-resolution gas chromatography/high-resolution mass spectrometry, gas chromatography/tandem mass spectrometry (GC-MS/MS) and GC/MS. The results showed that POPs congener composition profiles were more influenced by fish species than by geography. However, due to long range transport from emissions at lower latitudes, lighter congeners made a larger contribution to the total POPs concentrations in the northernmost areas compared to southern regions. A model was developed to elucidate the relative effects of several factors on POPs concentrations and showed that variation among and within fish species was associated with fat content, fish size, trophic position, and latitude. For the first time, POPs concentrations were shown to increase nonlinearly with fat content, reaching an asymptotic plateau when fat content was > 10%. This study explored detailed POP congener profiles and the factors associated with POPs accumulation in commercially relevant fish harvested from the NEAO.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Humans , Animals , Persistent Organic Pollutants , Tandem Mass Spectrometry , Gas Chromatography-Mass Spectrometry , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Fishes , Halogenated Diphenyl Ethers/analysis , Atlantic Ocean , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
5.
J Exp Bot ; 74(14): 4125-4142, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37083863

ABSTRACT

Chloroplasts movement within mesophyll cells in C4 plants is hypothesized to enhance the CO2 concentrating mechanism, but this is difficult to verify experimentally. A three-dimensional (3D) leaf model can help analyse how chloroplast movement influences the operation of the CO2 concentrating mechanism. The first volumetric reaction-diffusion model of C4 photosynthesis that incorporates detailed 3D leaf anatomy, light propagation, ATP and NADPH production, and CO2, O2 and bicarbonate concentration driven by diffusional and assimilation/emission processes was developed. It was implemented for maize leaves to simulate various chloroplast movement scenarios within mesophyll cells: the movement of all mesophyll chloroplasts towards bundle sheath cells (aggregative movement) and movement of only those of interveinal mesophyll cells towards bundle sheath cells (avoidance movement). Light absorbed by bundle sheath chloroplasts relative to mesophyll chloroplasts increased in both cases. Avoidance movement decreased light absorption by mesophyll chloroplasts considerably. Consequently, total ATP and NADPH production and net photosynthetic rate increased for aggregative movement and decreased for avoidance movement compared with the default case of no chloroplast movement at high light intensities. Leakiness increased in both chloroplast movement scenarios due to the imbalance in energy production and demand in mesophyll and bundle sheath cells. These results suggest the need to design strategies for coordinated increases in electron transport and Rubisco activities for an efficient CO2 concentrating mechanism at very high light intensities.


Subject(s)
Carbon Dioxide , Zea mays , Carbon Dioxide/metabolism , NADP/metabolism , Photosynthesis , Chloroplasts/metabolism , Plant Leaves , Mesophyll Cells , Adenosine Triphosphate/metabolism
6.
Foods ; 13(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38201123

ABSTRACT

Rehydration of dairy powders is a complex and essential process. A relatively new quantitative mechanism for monitoring powders' rehydration process uses the effective diffusion coefficient. This research focused on modifying a previously used labor-intensive method that will be able to automatically measure the real-time water diffusion coefficient in dairy powders based on confocal microscopy techniques. Furthermore, morphological characteristics and local hydration of individual particles were identified using an imaging analysis procedure written in Matlab©-R2023b and image analysis through machine learning algorithms written in Python™-3.11. The first model includes segmentation into binary images and labeling particles during water diffusion. The second model includes the expansion of data set selection, neural network training and particle markup. For both models, the effective diffusion follows Fick's second law for spherical geometry. The effective diffusion coefficient on each particle was computed from the dye intensity during the rehydration process. The results showed that effective diffusion coefficients for water increased linearly with increasing powder particle size and are in agreement with previously used methods. In summary, the models provide two independent machine measurements of effective diffusion coefficient based on the same set of micrographs and may be useful in a wide variety of high-protein powders.

7.
Food Chem ; 373(Pt B): 131445, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34731805

ABSTRACT

The changes in the feed of farmed Atlantic salmon (Salmo salar) towards a more plant-based diet affect the nutritional value of the fillets. By compiling the contents of a range of nutrients in 1108 samples of Norwegian farmed Atlantic salmon collected between 2005 and 2020, we found that the median contents of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) have decreased by > 60%. However, farmed Atlantic salmon remains a considerable source of EPA and DHA, with one and two portions being sufficient to meet the weekly adequate intake of EPA and DHA for adults (175 g) and two-year-olds (80 g), respectively. Farmed Atlantic salmon also remains a considerable source of protein, selenium, vitamin B12, and vitamin D3. Together, we demonstrate that farmed Atlantic salmon can contribute substantially to the nutrient intake of the consumers. These data are important for the Norwegian food composition table and future risk-benefit assessments on fatty fish consumption.


Subject(s)
Salmo salar , Animal Feed/analysis , Animals , Docosahexaenoic Acids , Eicosapentaenoic Acid , Nutrients , Seafood
8.
Environ Int ; 157: 106858, 2021 12.
Article in English | MEDLINE | ID: mdl-34530291

ABSTRACT

Marine fish from the North East Atlantic Ocean (NEAO) are nutrient rich and considered a valuable economic resource. However, marine fish are also a major dietary source of several contaminants, including persistent organic pollutants (POPs) and heavy metals. Using one of the world's largest seafood datasets (n > 25,000 individuals), comprising 12 commercially important fish species collected during 2006-2019 in the NEAO, we assessed the co-occurrence of elements and POPs, and evaluated potential risks to human consumers. Several positive correlations between concentrations of mercury (Hg), dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were observed. Concentrations of Hg, dioxins, PCBs and PBDEs increased from North to South and associations between marine sediment contamination, sea temperature, and fish Hg and POPs concentrations were identified using multi-linear regression (MLR) models. In general, Hg concentrations in fillet and liver of fish were positively associated with increases in both sediment contamination and sea temperature. POPs concentrations in both fillet and liver were positively associated with increases in sediment contamination, and only POPs concentrations in the liver of benthopelagic and demersal species were found to be positively correlated with sea temperature. Using a probabilistic approach to estimate human contaminant exposure from seafood, we showed that intake of pelagic species posed the highest risk of dioxins and dioxin-like PCBs (DL-PCBs) exposure, while intake of benthopelagic and demersal species posed the highest risk of Hg exposure. This study can serve as a model to further understand the distribution, co-occurrence, and trends of contaminants in seafood harvested from the NEAO and their potential risks to human consumers.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Atlantic Ocean , Fishes , Halogenated Diphenyl Ethers/analysis , Humans , Polychlorinated Biphenyls/analysis , Risk Assessment , Seafood/analysis , Water Pollutants, Chemical/analysis
9.
J Dairy Sci ; 101(12): 10743-10749, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30292547

ABSTRACT

Acid whey (AW) is the liquid co-product arising from acid-induced precipitation of casein from skim milk. Further processing of AW is often challenging due to its high mineral content, which can promote aggregation of whey proteins, which contributes to high viscosity of the liquid concentrate during subsequent lactose crystallization and drying steps. This study focuses on mineral precipitation, protein aggregation, and lactose crystallization in liquid AW concentrates (∼55% total solids), and on the microstructure of the final powders from 2 independent industrial-scale trials. These AW concentrates were observed to solidify either during processing or during storage (24 h) of pre-crystallized concentrate. The more rapid solidification in the former was associated with a greater extent of lactose crystallization and a higher ash-to-protein ratio in that concentrate. Confocal laser scanning microscopy analysis indicated the presence of a loose network of protein aggregates (≤10 µm) and lactose crystals (100-300 µm) distributed throughout the solidified AW concentrate. Mineral-based precipitate was also evident, using scanning electron microscopy, at the surface of AW powder particles, indicating the formation of insoluble calcium phosphate during processing. These results provide new information on the composition- and process-dependent physicochemical changes that are useful in designing and optimizing processes for AW.


Subject(s)
Caseins/chemistry , Milk/chemistry , Whey/chemistry , Animals , Chemical Phenomena , Chemical Precipitation , Crystallization , Desiccation , Food, Preserved , Lactose/chemistry , Microscopy, Electron, Scanning , Milk Proteins/analysis , Milk Proteins/chemistry , Powders/chemistry , Whey Proteins/chemistry
10.
J Exp Bot ; 69(8): 2049-2060, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29394374

ABSTRACT

The respiration rate of plant tissues decreases when the amount of available O2 is reduced. There is, however, a debate on whether the respiration rate is controlled either by diffusion limitation of oxygen or through regulatory processes at the level of the transcriptome. We used experimental and modelling approaches to demonstrate that both diffusion limitation and metabolic regulation affect the response of respiration of bulky plant organs such as fruit to reduced O2 levels in the surrounding atmosphere. Diffusion limitation greatly affects fruit respiration at high temperature, but at low temperature respiration is reduced through a regulatory process, presumably a response to a signal generated by a plant oxygen sensor. The response of respiration to O2 is time dependent and is highly sensitive, particularly at low O2 levels in the surrounding atmosphere. Down-regulation of the respiration at low temperatures may save internal O2 and relieve hypoxic conditions in the fruit.


Subject(s)
Fruit/metabolism , Pyrus/metabolism , Carbon Dioxide/metabolism , Cell Respiration , Down-Regulation , Models, Biological , Oxygen/metabolism , Temperature
11.
Plant Sci ; 252: 205-214, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717455

ABSTRACT

The mechanism of photosynthesis in C4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (gbs), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C4 photosynthesis to estimate gbs. The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between gbs and leaf nitrogen content (LNC) while old leaves had lower gbs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (Sb) correlated well with gbs although they were not significantly affected by LNC. As a result, the increase of gbs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on Sb was responsible for differences in gbs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO2 leakage pathway to unravel LNC and age effects further.


Subject(s)
Nitrogen/pharmacology , Photosynthesis , Zea mays/physiology , Chlorophyll/metabolism , Microscopy, Electron , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Plant Leaves/physiology , Time Factors , Zea mays/anatomy & histology , Zea mays/drug effects
12.
Plant Sci ; 246: 37-51, 2016 May.
Article in English | MEDLINE | ID: mdl-26993234

ABSTRACT

CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants.


Subject(s)
Carbon Dioxide/metabolism , Models, Biological , Photosynthesis , Zea mays/physiology , Carbon Cycle , Carbonic Anhydrases/metabolism , Chloroplasts/metabolism , Computer Simulation , Diffusion , Mesophyll Cells/metabolism , Plant Leaves/metabolism , Plant Vascular Bundle/metabolism
13.
J Sci Food Agric ; 96(15): 4984-4993, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26865255

ABSTRACT

BACKGROUND: Braeburn browning disorder is a storage disease characterised by flesh browning and lens-shaped cavities. The incidence of this postharvest disorder is known to be affected by pre-harvest application of fertilisers and triazole-based fungicides. Recent work has shown that calcium and potassium reduced the incidence of Braeburn browning disorder, while triazoles had the opposite effect. This study addresses the hypothesis of an early proteomic imprint in the apple fruit at harvest induced by the pre-harvest factors applied. If so, this could be used for an early screening of apple fruit at harvest for their postharvest susceptibility to flesh browning. RESULTS: Calcium and triazole had significant effects, while potassium did not. One hundred and thirty protein families were identified, of which 29 were significantly altered after calcium and 63 after triazole treatment. Up-regulation of important antioxidant enzymes was correlated with calcium fertilisation, while triazole induced alterations in the levels of respiration and ethylene biosynthesis related proteins. CONCLUSION: Pre-harvest fertiliser and fungicide application had considerable effects on the apple proteome at harvest. These changes, together with the applied storage conditions will determine whether or not BBD develops. © 2016 Society of Chemical Industry.


Subject(s)
Calcium/administration & dosage , Fruit/drug effects , Malus/chemistry , Potassium/administration & dosage , Proteome/drug effects , Triazoles/administration & dosage , Antioxidants , Ethylenes/biosynthesis , Fertilizers , Food Preservation/methods , Food Storage/methods , Fruit/chemistry , Fungicides, Industrial/administration & dosage , Maillard Reaction/drug effects , Plant Proteins/analysis
14.
Plant Cell Environ ; 39(1): 50-61, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26082079

ABSTRACT

We present a combined three-dimensional (3-D) model of light propagation, CO2 diffusion and photosynthesis in tomato (Solanum lycopersicum L.) leaves. The model incorporates a geometrical representation of the actual leaf microstructure that we obtained with synchrotron radiation X-ray laminography, and was evaluated using measurements of gas exchange and leaf optical properties. The combination of the 3-D microstructure of leaf tissue and chloroplast movement induced by changes in light intensity affects the simulated CO2 transport within the leaf. The model predicts extensive reassimilation of CO2 produced by respiration and photorespiration. Simulations also suggest that carbonic anhydrase could enhance photosynthesis at low CO2 levels but had little impact on photosynthesis at high CO2 levels. The model confirms that scaling of photosynthetic capacity with absorbed light would improve efficiency of CO2 fixation in the leaf, especially at low light intensity.


Subject(s)
Carbon Dioxide/metabolism , Models, Biological , Solanum lycopersicum/metabolism , Cell Respiration/radiation effects , Chlorophyll/metabolism , Computer Simulation , Diffusion , Fluorescence , Light , Solanum lycopersicum/radiation effects , Photosynthesis/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Transpiration/radiation effects
15.
Opt Express ; 23(13): 17467-86, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26191756

ABSTRACT

Monte Carlo methods commonly used in tissue optics are limited to a layered tissue geometry and thus provide only a very rough approximation for many complex media such as biological structures. To overcome these limitations, a Meshed Monte Carlo method with flexible phase function choice (fpf-MC) has been developed to function in a mesh. This algorithm can model the light propagation in any complexly shaped structure, by attributing optical properties to the different mesh elements. Furthermore, this code allows the use of different discretized phase functions for each tissue type, which can be simulated from the microstructural properties of the tissue, in combination with a tool for simulating the bulk optical properties of polydisperse suspensions. As a result, the scattering properties of tissues can be estimated from information on the microstructural properties of the tissue. This is important for the estimation of the bulk optical properties that can be used for the light propagation model, since many types of tissue have never been characterized in literature. The combination of these contributions, made it possible to use the MMC-fpf for modeling the light porapagation in plant tissue. The developed Meshed Monte Carlo code with flexible phase function choice (MMC-fpf) was successfully validated in simulation through comparison with the Monte Carlo code in Multi-Layered tissues (R2 > 0.9999) and experimentally by comparing the measured and simulated reflectance (RMSE = 0.015%) and transmittance (RMSE = 0.0815%) values for tomato leaves.

16.
BMC Plant Biol ; 14: 328, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25430515

ABSTRACT

BACKGROUND: Postharvest ripening of apple (Malus x domestica) can be slowed down by low temperatures, and a combination of low O2 and high CO2 levels. While this maintains the quality of most fruit, occasionally storage disorders such as flesh browning can occur. This study aimed to explore changes in the apple transcriptome associated with a flesh browning disorder related to controlled atmosphere storage using RNA-sequencing techniques. Samples from a browning-susceptible cultivar ('Braeburn') were stored for four months under controlled atmosphere. Based on a visual browning index, the inner and outer cortex of the stored apples was classified as healthy or affected tissue. RESULTS: Over 600 million short single-end reads were mapped onto the Malus consensus coding sequence set, and differences in the expression profiles between healthy and affected tissues were assessed to identify candidate genes associated with internal browning in a tissue-specific manner. Genes involved in lipid metabolism, secondary metabolism, and cell wall modifications were highly modified in the affected inner cortex, while energy-related and stress-related genes were mostly altered in the outer cortex. The expression levels of several of them were confirmed using qRT-PCR. Additionally, a set of novel browning-specific differentially expressed genes, including pyruvate dehydrogenase and 1-aminocyclopropane-1-carboxylate oxidase, was validated in apples stored for various periods at different controlled atmosphere conditions, giving rise to potential biomarkers associated with high risk of browning development. CONCLUSIONS: The gene expression data presented in this study will help elucidate the molecular mechanism of browning development in apples at controlled atmosphere storage. A conceptual model, including energy-related (linked to the tricarboxylic acid cycle and the electron transport chain) and lipid-related genes (related to membrane alterations, and fatty acid oxidation), for browning development in apple is proposed, which may be relevant for future studies towards improving the postharvest life of apple.


Subject(s)
Food Storage , Gene Expression Regulation, Plant , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Transcriptome , Biomarkers , Cold Temperature , Fruit/metabolism , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Time Factors
17.
Plant Cell Environ ; 37(10): 2433-52, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24548021

ABSTRACT

Some terrestrial wetland plants, such as rice, have super-hydrophobic leaf surfaces which retain a gas film when submerged. O2 movement through the diffusive boundary layer (DBL) of floodwater, gas film and stomata into leaf mesophyll was explored by means of a reaction-diffusion model that was solved in a three-dimensional leaf anatomy model. The anatomy and dark respiration of leaves of rice (Oryza sativa L.) were measured and used to compute O2 fluxes and partial pressure of O2 (pO2 ) in the DBL, gas film and leaf when submerged. The effects of floodwater pO2 , DBL thickness, cuticle permeability, presence of gas film and stomatal opening were explored. Under O2 -limiting conditions of the bulk water (pO2 < 10 kPa), the gas film significantly increases the O2 flux into submerged leaves regardless of whether stomata are fully or partly open. With a gas film, tissue pO2 substantially increases, even for the slightest stomatal opening, but not when stomata are completely closed. The effect of gas films increases with decreasing cuticle permeability. O2 flux and tissue pO2 decrease with increasing DBL thickness. The present modelling analysis provides a mechanistic understanding of how leaf gas films facilitate O2 entry into submerged plants.


Subject(s)
Gases/metabolism , Models, Biological , Oryza/physiology , Oxygen/metabolism , Cell Respiration , Computer Simulation , Darkness , Diffusion , Light , Oryza/radiation effects , Permeability , Plant Epidermis/physiology , Plant Epidermis/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Roots/physiology , Plant Roots/radiation effects , Plant Stomata/physiology , Plant Stomata/radiation effects , Plant Transpiration , Water/physiology
18.
New Phytol ; 199(4): 936-947, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23692271

ABSTRACT

The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed.


Subject(s)
Brassica napus/embryology , Models, Biological , Seeds/embryology , Brassica napus/ultrastructure , Cell Compartmentation , Cell Respiration , Computer Simulation , Diffusion , Gases/metabolism , Hypocotyl/ultrastructure , Oxygen/metabolism , Plant Oils/metabolism , Porosity , Reproducibility of Results , Seeds/ultrastructure , X-Ray Microtomography
19.
PLoS One ; 7(11): e48376, 2012.
Article in English | MEDLINE | ID: mdl-23144870

ABSTRACT

Transport of CO(2) in leaves was investigated by combining a 2-D, microscale CO(2) transport model with photosynthesis kinetics in wheat (Triticum aestivum L.) leaves. The biophysical microscale model for gas exchange featured an accurate geometric representation of the actual 2-D leaf tissue microstructure and accounted for diffusive mass exchange of CO(2.) The resulting gas transport equations were coupled to the biochemical Farquhar-von Caemmerer-Berry model for photosynthesis. The combined model was evaluated using gas exchange and chlorophyll fluorescence measurements on wheat leaves. In general a good agreement between model predictions and measurements was obtained, but a discrepancy was observed for the mesophyll conductance at high CO(2) levels and low irradiance levels. This may indicate that some physiological processes related to photosynthesis are not incorporated in the model. The model provided detailed insight into the mechanisms of gas exchange and the effects of changes in ambient CO(2) concentration or photon flux density on stomatal and mesophyll conductance. It represents an important step forward to study CO(2) diffusion coupled to photosynthesis at the leaf tissue level, taking into account the leaf's actual microstructure.


Subject(s)
Carbon Dioxide/metabolism , Models, Biological , Photosynthesis , Plant Leaves/metabolism , Triticum/metabolism , Algorithms , Chloroplasts/metabolism , Computer Simulation , Diffusion , Kinetics , Mitochondria/metabolism , Oxygen/metabolism , Plant Leaves/cytology , Plant Stomata/metabolism , Triticum/cytology
20.
New Phytol ; 193(2): 420-31, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22029709

ABSTRACT

• Internal root aeration enables waterlogging-tolerant species to grow in anoxic soil. Secondary aerenchyma, in the form of aerenchymatous phellem, is of importance to root aeration in some dicotyledonous species. Little is known about this type of aerenchyma in comparison with primary aerenchyma. • Micro-computed tomography was employed to visualize, in three dimensions, the microstructure of the aerenchymatous phellem in roots of Melilotus siculus. Tissue porosity and respiration were also measured for phellem and stelar tissues. A multiscale, three-dimensional, diffusion-respiration model compared the predicted O(2) profiles in roots with those measured using O(2) microelectrodes. • Micro-computed tomography confirmed the measured high porosity of aerenchymatous phellem (44-54%) and the low porosity of stele (2-5%) A network of connected gas spaces existed in the phellem, but not within the stele. O(2) partial pressures were high in the phellem, but fell below the detection limit in the thicker upper part of the stele, consistent with the poorly connected low porosity and high respiratory demand. • The presented model integrates and validates micro-computed tomography with measured radial O(2) profiles for roots with aerenchymatous phellem, confirming the existence of near-anoxic conditions at the centre of the stele in the basal parts of the root, coupled with only hypoxic conditions towards the apex.


Subject(s)
Imaging, Three-Dimensional/methods , Melilotus/anatomy & histology , Melilotus/physiology , Oxygen/pharmacology , Plant Roots/anatomy & histology , Plant Roots/physiology , Aerobiosis/drug effects , Air , Cell Respiration/drug effects , Diffusion/drug effects , Hypocotyl/anatomy & histology , Hypocotyl/growth & development , Melilotus/drug effects , Melilotus/growth & development , Models, Biological , Oxygen Consumption/drug effects , Partial Pressure , Plant Roots/drug effects , Plant Vascular Bundle/drug effects , Plant Vascular Bundle/physiology , Porosity/drug effects , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...