Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 235: 123821, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36870633

ABSTRACT

A combination of chemotherapy and chemodynamic therapy (CDT) is being developed to improve the theranostic efficacy and biological safety of current therapies. However, most CDT agents are restricted due to complex issues such as multiple components, low colloidal stability, carrier-associated toxicity, insufficient reactive oxygen species generation, and poor targeting efficacy. To overcome these problems, a novel nanoplatform composed of fucoidan (Fu) and iron oxide (IO) nanoparticles (NPs) was developed to achieve chemotherapy combined with CDT synergistic treatment with a facile self-assembling manner, and the NPs were made up of Fu and IO, in which the Fu was not only used as a potential chemotherapeutic but was also designed to stabilize the IO and target P-selectin-overexpressing lung cancer cells, thereby producing oxidative stress and thus synergizing the CDT efficacy. The Fu-IO NPs exhibited a suitable diameter below 300 nm, which favored their cellular uptake by cancer cells. Microscopic and MRI data confirmed the lung cancer cellular uptake of the NPs due to active Fu targeting. Moreover, Fu-IO NPs induced efficient apoptosis of lung cancer cells, and thus offer significant anti-cancer functions by potential chemotherapeutic-CDT.


Subject(s)
Lung Neoplasms , Nanoparticles , Neoplasms , Humans , Precision Medicine , P-Selectin , Cell Line, Tumor , Theranostic Nanomedicine , Neoplasms/drug therapy , Oxidative Stress , Lung Neoplasms/drug therapy , Magnetic Iron Oxide Nanoparticles , Nanoparticles/therapeutic use
2.
Talanta ; 250: 123698, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35763951

ABSTRACT

An early diagnosis of acute myocardial infarction (AMI) or thrombosis is complicated in patients with non-diagnostic features. AMI or thrombosis patients with chest pain are unintentionally discharged and have increased mortality. The study aimed to develop a smartphone biomedical sensor as a rapid test for AMI or thrombosis by naked-eye observation. The system was built on dimethyloctadecyl [3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP)-coated glass substrates, which refers to a nematic liquid crystal (LC)-binding antibody. One of the main biomolecules, cardiac troponin I (cTnI), is a substance in blood in people whose bodies are vulnerable to suffering a myocardial infarction or thrombosis. The other medium, LC, is a sensing biomaterial as an earlier detection method of ameliorating the disadvantages of older methods. Results revealed that the density of cTnI was positively correlated with the coefficient of light transmittance, and it has a high chance of being developed as a point-of-care device for a home inspection as it can be operated with a smartphone. As discussed above, the nematic LC is an effective and innovative healthcare method as a rapid test for diagnosis of AMI or thrombosis related diseases by naked-eye observation.


Subject(s)
Liquid Crystals , Myocardial Infarction , Ammonium Chloride , Biocompatible Materials , Biomarkers , Humans , Myocardial Infarction/diagnosis , Smartphone , Troponin I
3.
Mater Sci Eng C Mater Biol Appl ; 128: 112265, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474824

ABSTRACT

Spurred by recent progress in biomaterials and therapeutics, stimulus-responsive strategies that deliver an active substance in temporal-, spatial-, and dose-controlled fashions have become achievable. Implementation of such strategies necessitates the use of bio-safe materials that are sensitive to a specific pathological incitement or that, in response to a precise stimulus, undergo hydrolytic cleavage or a change in biomolecular conformation. An innovative design of polymeric stimulus-responsive systems should controllably release a drug or degrade the drug carrier in response to specific lesion enzymes. Wound healing is a great challenge due to various hidden factors such as pathogenic infections, neurovascular diseases, excessive exudates, lack of an effective therapeutic delivery system, low cell proliferation, and cell migration. In addition, long-term use of antibiotics in chronic wound management can result in side effects and antimicrobial resistance. Novel treatments with antibacterial pharmaceuticals thus vitally need to be developed. Recently, graphene and graphene family members have emerged as shining stars among biomaterials for wound-healing applications due to their excellent bioactive properties, which can overcome limitations of current wound dressings and fulfill wound-healing requirements. Herein, we developed a feasible approach to impregnate graphene oxide (GO) into genipin-crosslinked gelatin (3GO) hydrogels to enzymatically control GO release. The developed hydrogels were characterized by chemical, physical, morphological, and cellular analyses. The results proved that the 3GO1 hydrogel is biocompatible and significantly enhanced the mechanical strength by encapsulating GO. Moreover, the rate of GO release depended on the crosslinking degree and environmental enzyme levels. Enzymatically released GO displayed uniform dispersity, retained its antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa through sharp edges and wrapping mechanisms, and promoted human fibroblast migration. This multifunctional hydrogel we developed with antibacterial efficacy is suitable for future application as wound dressings.


Subject(s)
Graphite , Anti-Bacterial Agents/pharmacology , Bandages , Humans , Hydrogels , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...