Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 91(16): 10622-10630, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31322860

ABSTRACT

Fingermarks are an important form of crime-scene trace evidence; however, their usefulness may be hampered by a variation in response or a lack of robustness in detection methods. Understanding the chemical composition and distribution within fingermarks may help explain variation in latent fingermark detection with existing methods and identify new strategies to increase detection capabilities. The majority of research in the literature describes investigation of organic components of fingermark residue, leaving the elemental distribution less well understood. The relative scarcity of information regarding the elemental distribution within fingermarks is in part due to previous unavailability of direct, micron resolution elemental mapping techniques. This capability is now provided at third generation synchrotron light sources, where X-ray fluorescence microscopy (XFM) provides micron or submicron spatial resolution and direct detection with sub-µM detection limits. XFM has been applied in this study to reveal the distribution of inorganic components within fingermark residue, including endogenous trace metals (Fe, Cu, Zn), diffusible ions (Cl-, K+, Ca2+), and exogeneous metals (Ni, Ti, Bi). This study incorporated a multimodal approach using XFM and infrared microspectroscopy analyses to demonstrate colocalization of endogenous metals within the hydrophilic organic components of fingermark residue. Additional experiments were then undertaken to investigate how sources of exogenous metals (e.g., coins and cosmetics) may be transferred to, and distributed within, latent fingermarks. Lastly, this study reports a preliminary assessment of how environmental factors such as exposure to aqueous environments may affect elemental distribution within fingermarks. Taken together, the results of this study advance our current understanding of fingermark composition and its spatial distribution of chemical components and may help explain detection variation observed during detection of fingermarks using standard forensic protocols.

2.
Colloids Surf B Biointerfaces ; 176: 412-419, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30665095

ABSTRACT

The interfacial behavior of surfactants present in a natural extract from Quillaja saponaria Molina bark at the air-solution interface is studied by measurements of interfacial tension, interfacial elasticity, and interfacial reflectance FTIR spectroscopy. The active molecule, saponin, is observed directly at the air-solution interface (via reflectance FTIR spectroscopy) above and below the pKa of the molecule, and spectra confirm the altered charge of the interfacial layer at the two solution conditions. For all concentrations of saponin studied, and at pH values below and above pKa (i.e. pH 3 and 7), a reduction in interfacial tension as a function of time is observed, with some differences in early time-scale adsorption and with lower values of quasi-equilibrium interfacial tension for pH 3. The interfacial layer is seen to be elastic, as determined from measurements of hydrostatic expansion, with some variation at the two pH values, and as a function of concentration. In addition to interfacial layer characterisation, the interaction between two air-solution interfaces is probed using bubble collisions with an air-solution interface. This experiment allows for observation of thin film drainage kinetics and determination of the final foam film thickness for the case when one of the interfaces is at equilibrium while the dynamic adsorption layer is being established at the other. This is the first time when the interactions between such interfaces (i.e. only one being at equilibrium) have been studied. This is of particular importance for the formation stage of foams, during which time many of the interfaces are not at equilibrium. When two interfaces interact across a thin liquid film, pH is seen to significantly influence foam film thickness.


Subject(s)
Plant Bark/chemistry , Quillaja/chemistry , Saponins/analysis , Hydrogen-Ion Concentration , Rheology , Solutions , Spectroscopy, Fourier Transform Infrared , Surface Tension
3.
Sci Rep ; 8(1): 17804, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30546121

ABSTRACT

Soft polymer films, such as polyelectrolyte multilayers (PEMs), are useful coatings in materials science. The properties of PEMs often rely on the degree of hydration, and therefore the study of these films in a hydrated state is critical to allow links to be drawn between their characteristics and performance in a particular application. In this work, we detail the development of a novel soft contact cell for studying hydrated PEMs (poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride)) using FTIR microspectroscopy. FTIR spectroscopy can interrogate the nature of the polymer film and the hydration water contained therein. In addition to reporting spectra obtained for hydrated films confined at the solid-solid interface, we also report traditional ATR FTIR spectra of the multilayer. The spectra (microspectroscopy and ATR FTIR) reveal that the PEM film build-up proceeds as expected based on the layer-by-layer assembly methodology, with increasing signals from the polymer FTIR peaks with increasing bilayer number. In addition, the spectra obtained using the soft contact cell indicate that the PEM film hydration water has an environment/degree of hydrogen bonding that is affected by the chemistry of the multilayer polymers, based on differences in the spectra obtained for the hydration water within the film compared to that of bulk electrolyte.

4.
Langmuir ; 31(41): 11249-59, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26421938

ABSTRACT

The formation of fucoidan/chitosan-based polyelectrolyte multilayers (PEMs) has been studied with in situ Fourier transform infrared (FTIR) spectroscopy. Attenuated total reflectance (ATR) FTIR spectroscopy has been used to follow the sequential build-up of the multilayer, with peaks characteristic of each polymer being seen to increase in intensity with each respective adsorption stage. In addition, spectral processing has allowed for the extraction of spectra from individual adsorbed layers, which have been used to provide unambiguous determination of the adsorbed mass of the PEM at each stage of formation. The PEM was seen to undergo a transition in growth regimes during build-up: from supra-linear to linear. In addition, the wettability of the PEM has been probed at each stage of the build-up, using the captive bubble contact angle technique. The contact angles were uniformly low, but showed variation in value depending on the nature of the outer polymer layer, and this variation correlated with the overall percentage hydration of the PEM (determined from FTIR and quartz crystal microbalance data). The nature of the hydration water within the polyelectrolyte multilayer has also been studied with FTIR spectroscopy, specifically in situ synchrotron ATR FTIR microscopy of the multilayer confined between two solid surfaces. The acquired spectra have enabled the hydrogen bonding environment of the PEM hydration water to be determined. The PEM hydration water is seen to have an environment in which it is subject to fewer hydrogen bonding interactions than in bulk electrolyte solution.


Subject(s)
Chitosan/chemistry , Polymers/chemical synthesis , Polysaccharides/chemistry , Electrolytes/chemical synthesis , Electrolytes/chemistry , Molecular Structure , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Water/chemistry
5.
Phys Chem Chem Phys ; 17(6): 4199-209, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25567107

ABSTRACT

Gold was exposed to ethanol solutions containing 0.1 wt% 1-hexyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide (HMIM NTf2), an ionic liquid (IL). The resulting adsorbed layers were interrogated using X-ray photoelectron spectroscopy (XPS - both conventional and synchrotron-based) and spectroscopic ellipsometry. Ellipsometry indicated that the adsorbed layer thickness was smaller than the size of an IL ion pair, with an average determined layer thickness of 0.15 nm. This value indicates that the adsorbed layer on gold is most likely patchy. Conventional XPS revealed that the IL adsorbs irreversibly to gold, with equal amounts of anion and cation in the adsorbed layer. High signal-to-noise synchrotron XPS spectra permitted detailed deconvolution of the S 2p and N 1s peaks for the IL-treated gold, providing more information on adsorbed layer composition and structure. Spectra acquired as a function of X-ray exposure time indicate that non-interacting physisorbed IL components are preferentially removed at the expense of surface bound components, and that anion and cation are both present in the surface bound layer, and also in the layer above. A model structure for the IL adsorbed on gold is proposed.

6.
Soft Matter ; 11(11): 2110-24, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25599229

ABSTRACT

Fucoidan is a sulfated polysaccharide that is extracted primarily from seaweed. The polymer contains a natural variation in chemistry based upon the species of seaweed from which it is extracted. We have used two different fucoidans from two different seaweed species (Fucus vesiculosus - FV; and Undaria pinnatifida - UP) as polyanions for the formation of polysaccharide-based polyelectrolyte multilayers (PEMs), to determine if the chemistry of different fucoidans can be chosen to fine-tune the structure of the polymer film. Partially acetylated chitosan was chosen as the polycation for the work, and the presented data illustrate the effect of secondary hydrogen bonding interactions on PEM build-up and properties. Ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements performed during film build-up enabled detailed measurements of layer thickness, adsorbed mass, and the dynamics of the multilayer formation process. High quality atomic force microscopy (AFM) images revealed the differences in morphology of the PEMs formed from the two fucoidans, and allowed for a more direct layer thickness measurement. X-ray photoelectron spectroscopy (XPS) confirmed the chemistry of the films, and an indication of the altered interactions between chitosan and fucoidan with variation in fucoidan type, but also with layer number. Distinct differences were observed between multilayers formed with the two fucoidans, with those constructed using UP having thinner, denser, less hydrated layers than those constructed using FV. These differences are discussed in the context of their varied chemistry, primarily their difference in molecular weight and degree of acetylation.


Subject(s)
Electrolytes/chemistry , Polysaccharides/chemistry , Chitosan/chemistry , Elastic Modulus , Fucus/chemistry , Microscopy, Atomic Force , Molecular Weight , Photoelectron Spectroscopy , Quartz Crystal Microbalance Techniques
7.
Phys Chem Chem Phys ; 16(40): 22409-17, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25226281

ABSTRACT

We report on the loading and release of curcumin (a hydrophobic polyphenol with anti-inflammatory and anti-bacterial properties) from polyelectrolyte multilayers composed of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS). We have used the in situ techniques of attenuated total reflectance (ATR) FTIR spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) to study the formation of the PEM and the incorporation of curcumin, providing direct evidence of the incorporation, in terms of molecular vibrations and gravimetric detection. The release of curcumin was followed using ex situ measurements of UV-visible spectroscopy of PEM films on quartz plates, in addition to in situ ATR FTIR measurements. Release was studied as a function of salt concentration of the release solution (0.001 M NaCl; 1 M NaCl). UV-visible spectroscopy indicated that salt concentration of the release solution had a major impact on release rates, with higher salt giving faster/more extensive release. However, prolonged timescale immersion and monitoring with UV-visible spectroscopy indicated that sample dehydration/rehydration cycling (required to measure UV absorbance) was responsible for the release of curcumin, rather than immersion time. In situ measurements of release kinetics with ATR FTIR confirmed that release does not occur spontaneously while the multilayer remains hydrated.


Subject(s)
Polyethylenes/chemistry , Polymers/chemistry , Quaternary Ammonium Compounds/chemistry , Sulfonic Acids/chemistry , Electrolytes/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Quartz Crystal Microbalance Techniques , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...