Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Steroids ; 199: 109298, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619673

ABSTRACT

6ß-Hydroxytestosterone is a biomarker for the activity of human cytochrome P450 3A4 (P450 3A4), the major drug metabolizing cytochrome P450 enzyme. Despite its significance, efficient routes for the chemical synthesis of 6ß-hydroxytestosterone are rare. In this study, 6ß-hydroxytestosterone was synthesized through the oxidation of a 3,5-diene precursor under the Uemura-Doyle reaction conditions using a dirhodium catalyst in the presence of tert-butylhydroperoxide. Mechanistic studies showed that some oxygen is incorporated from molecular oxygen and CH abstraction is partially rate-limiting. This reaction was used to synthesize 6ß-hydroxyandrostenedione, which was used as a standard to test the hypothesis of whether P450 3A4 catalyzes the hydroxylation of androstenedione. Upon incubation of P450 3A4 with androstenedione, a hydroxylated product was formed, which matched the retention time of synthetic 6ß-hydroxyandrostenedione. This reaction can be exploited to study other biochemical processes involving compounds with a 6 ß -hydroxy-3-keto-Δ4 steroid backbone.

2.
Steroids ; 197: 109260, 2023 09.
Article in English | MEDLINE | ID: mdl-37336340

ABSTRACT

Low concentrations of hyocholic acid in human serum has been linked to diabetes. Due to its important role in human health, we were interested in synthesizing hyocholic acid to explore potential biochemical properties of this bile acid. Here, a synthesis of hyocholic acid is reported from chenodeoxycholic acid. The key step was a Rubottom oxidation of a silyl enol ether intermediate to directly incorporate the oxygen at C6. Furthermore, the synthesized hyocholic acid product was treated with NaIO4 to cleave the C6-C7 bond to yield a hemiacetal at C6. This CC bond cleavage reaction using NaIO4 was used to develop an ultra-performance liquid chromatography mass spectrometry method to distinguish between a 1 to 1 mixture of hyocholic acid and cholic acid (a 12α-hydroxylated bile acid), two bile acid regioisomers with identical masses. Upon treatment of the mixture with NaIO4, hyocholic acid was selectively cleaved in the B ring (C6-C7 bond) to yield the hemiacetal that formed between the C3-hydroxy and the C6-aldehyde moiety with an m/z 405 while cholic acid remained intact with an m/z 407 in the negative electrospray ionization mode. Subsequently, a commercially available ox bile extract was treated with NaIO4 to detect bile acid derivatives by mass spectrometry. Two possible hyocholic acid derivatives conjugated to serine and gamma-glutamic semialdehyde were detected in electrospray ionization positive mode, which oxidatively cleaved with NaIO4 (m/z 496 and 522 to m/z 494 and 520, respectively).


Subject(s)
Bile Acids and Salts , Cholic Acids , Humans , Cholic Acid , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...