Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 7(7)2024 07.
Article in English | MEDLINE | ID: mdl-38744470

ABSTRACT

Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.


Subject(s)
Benzothiazoles , Drug Synergism , Mycobacterium marinum , Zebrafish , Animals , Benzothiazoles/pharmacology , Mycobacterium marinum/drug effects , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Cell Membrane Permeability/drug effects , Macrophages/drug effects , Macrophages/microbiology , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Cell Membrane/metabolism , Cell Membrane/drug effects , Rifampin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...