Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Type of study
Publication year range
1.
J Pharmacol Sci ; 150(4): 223-232, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36344044

ABSTRACT

Oroxylin-A (OroA), a flavonoid isolated from Scutellariae baicalensis, alleviates cardiovascular dysfunction. Several procedures for synthesizing OroA have been developed but show low production yield and regioselectivity. We synthesized OroA from baicalin using a one-pot reaction to increase its overall yield. We also determined the chemical properties and mechanism of action of the synthesized OroA and OroA phosphate diethyl ester (OroA-OET) in vascular function. The induction of vascular reactivity by OroA and OroA-OET was evaluated using blood vessel myography and biochemical analysis to assess nitric oxide synthase-mediated nitric oxide production in mouse aortic arteries. OroA and OroA-OET (0.1-30 µM) induced sustained vasorelaxation, which was partly mediated by the endothelium in isolated normal arteries pre-contracted with phenylephrine. OroA and OroA-OET significantly attenuated vasoconstrictors-induced contractile responses. Dilation effects were blocked by the non-selective nitric oxide synthase inhibitor N (omega)-nitro-l-arginine methyl ester but not by tetraethylammonium or 1H-(1,2,4)oxadiazolo [4,3-a]quinoxalin-1-one. Notably, preincubation with OroA and OroA-OET potentiated acetylcholine-induced relaxation and endothelial nitric oxide production in the arteries with the endothelium. OroA and OroA-OET protected against cardiovascular dysfunction. The synthesis and lead compounds used not only improved the yield of OroA from natural sources but also potentially regulated vascular tone.


Subject(s)
Organophosphonates , Vasoconstrictor Agents , Mice , Animals , Vasoconstrictor Agents/pharmacology , Nitric Oxide/pharmacology , Organophosphonates/pharmacology , Nitric Oxide Synthase Type III , Aorta , Flavonoids/pharmacology , Nitric Oxide Synthase , Vasodilation , Endothelium, Vascular , NG-Nitroarginine Methyl Ester/pharmacology
2.
Molecules ; 25(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952217

ABSTRACT

Unique tunable aryl imidazolium ionic liquids successfully catalyzed Friedel-Crafts acylation and thioesterification in sealed tubes. These reactions can form a C-C bond and a C-S bond with high atom economy. Ionic liquids exhibited high activity and catalyzed essential reactions with good to excellent yields while retaining their catalytic activities for recycling.


Subject(s)
Imidazoles/chemistry , Ionic Liquids/chemistry , Lewis Acids/chemistry , Sulfhydryl Compounds/chemistry , Acylation , Catalysis , Esterification
3.
Materials (Basel) ; 11(12)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551622

ABSTRACT

A series of unique tunable aryl-imidazolium magnetic ionic liquids (MILs) with dual acidity that contain both Brønsted and Lewis acidic sites (abbreviated as B-L MILs) were synthesized and characterized using nuclear magnetic resonance and mass spectrometry. Physical properties, such as thermal properties, magnetic susceptibility, and Brønsted and Lewis acidity, were measured. These properties were found to depend on the cation structure. These B-L MILs had good solubility in many organic solvents, good thermal stability, and low melting points, and exhibited magnet-like behavior. For these B-L MILs, the Brønsted acidity was measured using ultraviolet-visible (UV-Vis), and the Lewis acidity was measured using Fourier transform infrared spectroscopy (FTIR). The results showed that B-L MILs with an electron-withdrawing group in the aryl-imidazolium moiety had higher Brønsted acidity, whereas those with an electron-donating group had higher Lewis acidity. This type of ionic liquid, with both Brønsted and Lewis acidic sites, is expected to be a useful solvent and catalyst for organic reactions.

4.
Anticancer Res ; 34(4): 1801-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24692713

ABSTRACT

Breast cancer is one of the most common tumors in females. The therapeutic resistance of breast cancer has motivated the development of new agents for prevention and treatment. For the present study, several compounds were designed and analyzed for their antitumor activity in many cancer cell lines. 4-(3,4,5-Trimethoxyphenoxy) benzoic acid (compound 1) and its derivatives were selected for studying the anti-proliferative and cytotoxic effects on five human cancer cell lines. Results indicated that compounds 1 and 2 significantly suppressed the cell viability of MCF-7 and MDA-MB-468 cancer cells. However, compounds 1 and 2 had only minor effects on HepG2, Huh-7, and Hela cells. Moreover, compounds 1 and 2 exhibited a novel anti-tumor activity through the induction of cell-cycle arrest at G2/M and apoptosis in MCF-7 and MDA-MB-486 breast cancer cells. Both compounds reduced colony-forming ability in MCF-7 cells. Flow cytometric analysis indicated that caspase-3 activity was increased in response to treatment with compounds 1 and 2. Taken together, these findings suggest that the novel compounds 1 and 2 are potential anticancer agents with clinical promise for breast cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzoic Acid/pharmacology , Breast Neoplasms , Antineoplastic Agents/chemistry , Benzoic Acid/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Tumor Stem Cell Assay
5.
Int J Mol Sci ; 15(1): 743-57, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24406729

ABSTRACT

Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxy)benzoic acid (TMPBA) and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI) nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP) kinases, 5' adenosine monophosphate-activated protein kinase (AMPK), and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins' expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK) signaling. These findings support TMPBA's clinical promise as a potential candidate for breast cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoates/pharmacology , Cyclins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phenyl Ethers/pharmacology , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzoates/chemical synthesis , Benzoates/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , G2 Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Hep G2 Cells , Humans , M Phase Cell Cycle Checkpoints/drug effects , MCF-7 Cells , Phenyl Ethers/chemical synthesis , Phenyl Ethers/chemistry , Phosphorylation/drug effects
6.
Biomaterials ; 34(22): 5677-88, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23639532

ABSTRACT

We synthesize a NIR MHI-148 dye, a lipophilic heptamethine cyanine, with capability in tumor-targeting property to accumulate in the mitochondria of tumor. In the context of MHI-148 dye, we demonstrate effective tumor targeting and NIR fluorescence in vitro and in vivo for MHI-148 as compared to ICG. A series of porous Gd silicates related nanoparticles, i.e. Gd silicate, Gd silicate@mSiO(2) (mSiO(2): mesoporous silica shell), and Gd(3+)-chelated Gd silicate@mSiO(2) (Gd(3+)-DOTA chelated on the mSiO(2)) are fabricated to demonstrate their magnetic resonance (MR) contrast imaging effects. Those Gd silicates related nanoparticles exhibit dual MR effect, expressing T(1)-brightened and T(2)-darkened effects, in lower magnetic field. In high magnetic field, an abnormal enhanced transverse relaxivity (r(2)) appears, showing an effective T(2)-lowering effect, possibly due to concentrated Gd amount and porous architecture. The r(2) value increases 4-5 times as the field strength increased from 3T to 7T. The Gd(3+)-chelated Gd silicate@mSiO(2) has given large r(2) (T(2)-lowering effect) up to 343.8 s(-1) mM(-1), which is even larger than the reported magnetic Fe(3)O(4) nanoparticles measured at the same field. Using a 9.4T animal micro MRI system we have seen effectively darken in signal for those porous Gd silicates related NPs, while no such phenomenon appears in commercial Gd-DOTA agent. The MHI-148 is then conjugated on the porous Gd silicate@mSiO(2) nanoparticles for a new paradigm with three functionalities for in vivo tumor targeting, near-infrared fluorescent and MR imaging by means of only using MHI-148 dye.


Subject(s)
Carbocyanines , Gadolinium , Magnetic Resonance Imaging/methods , Nanoparticles , Neoplasms/metabolism , Silicates , Spectroscopy, Near-Infrared , Animals , Carbocyanines/chemical synthesis , Carbocyanines/chemistry , Cell Line, Tumor , Endocytosis , Fibroblasts/cytology , Fibroblasts/metabolism , Fluorescence , Heterocyclic Compounds , Humans , Indocyanine Green , Lipids/chemistry , Mice , Mice, SCID , Nanoparticles/ultrastructure , Organ Specificity , Organometallic Compounds , Porosity , Propylamines , Silanes/chemistry , Time Factors
7.
Exp Transl Stroke Med ; 2(1): 19, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-20937119

ABSTRACT

BACKGROUND: Increased systemic cytokines and elevated brain levels of monoamines, and hydroxyl radical productions are thought to aggravate the conditions of cerebral ischemia and neuronal damage during heat stroke. Dexamethasone (DXM) is a known immunosuppressive drug used in controlling inflammation, and hydroxyethyl starch (HES) is used as a volume-expanding drug in cerebral ischemia and/or cerebral injury. Acute treatment with a combined therapeutic approach has been repeatedly advocated in cerebral ischemia experiments. The aim of this study is to investigate whether the combined agent (HES and DXM) has beneficial efficacy to improve the survival time (ST) and heat stroke-induced cerebral ischemia and neuronal damage in experimental heat stroke. METHODS: Urethane-anesthetized rats underwent instrumentation for the measurement of colonic temperature, mean arterial pressure (MAP), local striatal cerebral blood flow (CBF), heart rate, and neuronal damage score. The rats were exposed to an ambient temperature (43 degrees centigrade) to induce heat stroke. Concentrations of the ischemic and damage markers, dopamine, serotonin, and hydroxyl radical productions in corpus striatum, and the serum levels of interleukin-1 beta, tumor necrosis factor-alpha and malondialdehyde (MDA) were observed during heat stroke. RESULTS: After heat stroke, the rats displayed circulatory shock (arterial hypotension), decreased CBF, increased the serum levels of cytokines and MDA, increased cerebral striatal monoamines and hydroxyl radical productions release, and severe cerebral ischemia and neuronal damage compared with those of normothermic control rats. However, immediate treatment with the combined agent at the onset of heat stroke confers significant protection against heat stroke-induced circulatory shock, systemic inflammation; cerebral ischemia, cerebral monoamines and hydroxyl radical production overload, and improves neuronal damage and the ST in rats. CONCLUSIONS: Our results suggest that the combination of a colloid substance with a volume-expanding effect and an anti-inflammatory agent may provide a better resuscitation solution for victims with heat stroke.

8.
Biol Pharm Bull ; 33(9): 1522-8, 2010.
Article in English | MEDLINE | ID: mdl-20823568

ABSTRACT

There is evidence that increased plasma cytokines, elevated brain levels of monoamines and hydroxyl radical production may be implicated in pathogenesis during heat stroke in rats. Acute treatment with a combined therapeutic approach has been repeatedly advocated in cerebral ischemia experiments. The aim of this study was to investigate whether the combined agent (mannitol and dexamethasone) has beneficial efficacy to improve the survival time (ST) and heat stroke-induced damage in experimental heat stroke. Urethane-anesthetized rats underwent instrumentation for the measurement of colonic temperature, mean arterial pressure (MAP), striatal cerebral blood flow (CBF), heart rate, and neuronal damage score. The rats were exposed to an ambient temperature (43 degrees C) to induce heat stroke. Concentrations of the ischemic and damage markers, dopamine, serotonin, and hydroxyl radical production in corpus striatum, and the plasma levels of tumor necrosis factor-alpha (TNF-alpha) were observed during heat stroke. After the onset of heat stroke, the heat stroke rats display decreased MAP, decreased CBF, increased the plasma levels of TNF-alpha, increased cerebral striatal monoamines and hydroxyl radical production release, and severe cerebral ischemia and neuronal damage compared with those of normothermic control rats. However, immediate treatment with the combined agent confers significant protection against heat stroke-induced arterial hypotension, systemic inflammation, cerebral ischemia, cerebral monoamines and hydroxyl radical production overloads, and improves neuronal damage and the ST in heat stroke rats. Our data suggest that administration of this combined agent seems to have more effective to ameliorate the heat stroke-induced neuronal damage and prolong the ST.


Subject(s)
Dexamethasone/administration & dosage , Heat Stroke/drug therapy , Mannitol/administration & dosage , Neurons/drug effects , Neurons/pathology , Animals , Cell Survival/drug effects , Cell Survival/physiology , Drug Therapy, Combination , Heat Stroke/metabolism , Heat Stroke/pathology , Male , Neurons/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley
9.
J Biochem Mol Toxicol ; 23(5): 349-56, 2009.
Article in English | MEDLINE | ID: mdl-19827130

ABSTRACT

Limited research has been performed on S-adenosylhomocysteine (SAH) or homocysteine (Hcy)-evoked cell damage in hepatic and neuronal cells. In this study, we assessed effects of SAH or Hcy on cell cytotoxicity and DNA damage in hepatic and neuronal cells and attempted to find the underlying mechanism. Cell cytotoxicity and DNA damage were evaluated in murine hepatic cells (BNL CL.2 cell line) and microglia cells (BV-2 cell line) with SAH or Hcy treatment for 48 h. The influences of SAH or Hcy on lipid peroxidation and DNA methylation were also measured in both cell lines. SAH (5-20 microM) or Hcy (1-5 mM) dose dependently inhibited cell cytotoxicity and enhanced DNA damage in both types of cells. Furthermore, SAH treatment markedly increased intracellular SAH levels and DNA hypomethylation, whereas Hcy caused minimal effects on these two parameters at much higher concentrations. Hcy significantly induced lipid peroxidation, but not SAH. The present results show that SAH might cause cellular DNA damage in hepatic and microglia cells by DNA hypomethylation, resulting in irreversible DNA damage and increased cell cytotoxicity. In addition, higher Hcy could induce cellular DNA damage through increased lipid peroxidation and DNA hypomethylation. We suggest that SAH is a better marker of cell damage than Hcy in hepatic and microglia cells.


Subject(s)
DNA Damage/drug effects , Hepatocytes/drug effects , Homocysteine/toxicity , Microglia/drug effects , S-Adenosylhomocysteine/toxicity , Animals , Cell Line , Comet Assay , DNA Methylation/drug effects , Dose-Response Relationship, Drug , Formazans/metabolism , Lipid Peroxidation/drug effects , Liver/cytology , Mice , Temperature , Tetrazolium Salts/metabolism , Thiobarbituric Acid Reactive Substances/analysis , Thiobarbituric Acid Reactive Substances/metabolism , Time Factors
10.
Biomaterials ; 30(34): 6665-73, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19775745

ABSTRACT

To improve the transfection efficiency of polycations with DNA, we synthesized poly(ester-co-urethane)(PEU-g-PEI800) with short chain PEI800 in the side chain, and poly(ester-co-urethane)(PEU) without short chain PEI800. Both PEU-g-PEI800 and PEU, readily self-assembled with plasmid DNA (pCMV-betagal) in a HEPES buffer, were characterized by dynamic light scattering and zeta-potential. The results reveal that PEU-g-PEI800 and PEU were able to self-assemble particles with DNA and yield nano-sized complexes (<200nm) with positive charge at N/P ratios of 20/1 and 120/1, respectively. The degradation studies indicate that the half-life of PEU-g-PEI800 and PEU in the HEPES buffer were 14 and 35h at pH 7.4, respectively. Titration studies were performed to determine the buffering capacities of the polymers. The COS-7 cell viabilities in the presence of PEU-g-PEI800/DNA, PEU/DNA, and PEI25k/DNA were studied. In addition, The PEU-g-PEI800/DNA complexes were able to transfect COS-7 cells in vitro with a high efficiency comparable to a well-known gene carrier PEI25k. The results indicate that PEU-g-PEI800 is an attractive cationic poly (ester-co-urethane) for gene delivery and an interesting candidate for further study.


Subject(s)
DNA/administration & dosage , Polyesters/chemistry , Polyethyleneimine/chemistry , Polyurethanes/chemistry , Transfection , Cations , DNA/chemistry , DNA/genetics , Hydrolysis , Light , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Plasmids , Scattering, Radiation
11.
Chem Biol ; 15(6): 527-32, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18559263

ABSTRACT

The recently sequenced genomes of several Aspergillus species have revealed that these organisms have the potential to produce a surprisingly large range of natural products, many of which are currently unknown. We have found that A. nidulans produces emericellamide A, an antibiotic compound of mixed origins with polyketide and amino acid building blocks. Additionally, we describe the discovery of four previously unidentified, related compounds that we designate emericellamide C-F. Using recently developed gene targeting techniques, we have identified the genes involved in emericellamide biosynthesis. The emericellamide gene cluster contains one polyketide synthase and one nonribosomal peptide synthetase. From the sequences of the genes, we are able to deduce a biosynthetic pathway for the emericellamides. The identification of this biosynthetic pathway opens the door to engineering novel analogs of this structurally complex metabolite.


Subject(s)
Aspergillus nidulans/metabolism , Depsipeptides/biosynthesis , Information Storage and Retrieval , Aspergillus nidulans/genetics , Fermentation , Gene Targeting , Genes, Fungal , Mass Spectrometry , Open Reading Frames
SELECTION OF CITATIONS
SEARCH DETAIL
...