Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36677881

ABSTRACT

Allantoinase (ALLase; EC 3.5.2.5) possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carbamylated lysine. ALLase acts as a key enzyme for the biogenesis and degradation of ureides by catalyzing the conversion of allantoin into allantoate. Biochemically, ALLase belongs to the cyclic amidohydrolase family, which also includes dihydropyrimidinase, dihydroorotase, hydantoinase (HYDase), and imidase. Previously, the crystal structure of ALLase from Escherichia coli K-12 (EcALLase-K12) was reported; however, the two active site loops crucial for substrate binding were not determined. This situation would limit further docking and protein engineering experiments. Here, we solved the crystal structure of E. coli BL21 ALLase (EcALLase-BL21) at a resolution of 2.07 Å (PDB ID 8HFD) to obtain more information for structural analyses. The structure has a classic TIM barrel fold. As compared with the previous work, the two missed active site loops in EcALLase-K12 were clearly determined in our structure of EcALLase-BL21. EcALLase-BL21 shared active site similarity with HYDase, an important biocatalyst for industrial production of semisynthetic penicillin and cephalosporins. Based on this structural comparison, we discussed the functional role of the two active site loops in EcALLase-BL21 to better understand the substrate/inhibitor binding mechanism for further biotechnological and pharmaceutical applications.


Subject(s)
Escherichia coli K12 , Escherichia coli , Escherichia coli/metabolism , Catalytic Domain , Amidohydrolases/chemistry , Catalysis , Crystallography, X-Ray , Binding Sites
2.
Oncotarget ; 9(30): 21512-21529, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29765556

ABSTRACT

Afatinib, used for the first-line treatment of non-small-cell lung carcinoma (NSCLC) patients with distinct epidermal growth factor receptor (EGFR) mutations, inactivates EGFR by mimicking ATP structure and forming a covalent adduct with EGFR. We developed a method to unravel potential targets of afatinib in NSCLC cells through immunoprecipitation of afatinib-labeling proteins with anti-afatinib antiserum and mass spectrometry analysis. Ribonucleotide reductase (RNR) is one of target proteins of afatinib revealed by this method. Treatment of afatinib at 10-100 nM potently inhibited intracellular RNR activity in an in vitro assay using permeabilized PC-9 cells (formerly known as PC-14). PC-9 cells treated with 10 µM afatinib displayed elevated markers of DNA damage. Long-term treatment of therapeutic concentrations of afatinib in PC-9 cells caused significant decrease in protein levels of RNR subunit M2 at 1-10 nM and RNR subunit M1 at 100 nM. EGFR-null Chinese hamster ovary (CHO) cells treated with afatinib also showed similar effects. Afatinib repressed the upregulation of RNR subunit M2 induced by gemcitabine. Covalent modification with afatinib resulting in inhibition and protein downregulation of RNR underscores the therapeutic and off-target effects of afatinib. Afatinib may serve as a lead compound of chemotherapeutic drugs targeting RNR. This method can be widely used in the identification of potential targets of other covalent drugs.

3.
Amino Acids ; 44(4): 1181-91, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23287969

ABSTRACT

Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal center in the active site for other metalloenzymes.


Subject(s)
Amidohydrolases/metabolism , Bacterial Proteins/chemistry , Carboxylic Acids/metabolism , Dihydroorotase/metabolism , Klebsiella pneumoniae/enzymology , Lysine/metabolism , Metals/metabolism , Salmonella typhimurium/enzymology , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amino Acid Motifs , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Dihydroorotase/chemistry , Dihydroorotase/genetics , Kinetics , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/genetics , Lysine/chemistry , Lysine/genetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Processing, Post-Translational , Salmonella typhimurium/chemistry , Salmonella typhimurium/genetics
4.
Protein J ; 30(6): 384-94, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21739308

ABSTRACT

Bacterial allantoinase (ALLase; EC 3.5.2.5), which catalyzes the conversion of allantoin into allantoate, possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carboxylated lysine. Here, we characterized ALLase from Escherichia coli BL21. Purified recombinant ALLase exhibited no activity but could be activated when preincubating with some metal ions before analyzing its activity, and was in the order: Mn(2+)- â‰« Co(2+)- > Zn(2+)- > Ni(2+)- > Cd(2+)- ~Mg(2+)-activated enzyme; however, activity of ALLase (Mn(2+)-activated form) was also significantly inhibited with 5 mM Co(2+), Zn(2+), and Cd(2+) ions. Activity of Mn(2+)-activated ALLase was increased by adding the reducing agent dithiothreitol (DTT), but was decreased by treating with the sulfhydryl modifying reagent N-ethylmaleimide (NEM). Inhibition of Mn(2+)-activated ALLase by chelator 8-hydroxy-5-quinolinesulfonic acid (8-HQSA), but not EDTA, was pH-dependent. Analysis of purified ALLase by gel filtration chromatography revealed a mixture of monomers, dimers, and tetramers. Substituting the putative metal binding residues His59, His61, Lys146, His186, His242, and Asp315 with Ala completely abolished the activity of ALLase, even preincubating with Mn(2+) ions. On the basis of these results, as well as the pH-activity profile, the reaction mechanism of ALLase is discussed and compared with those of other cyclic amidohydrolases.


Subject(s)
Amidohydrolases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Recombinant Proteins/chemistry , Amidohydrolases/genetics , Amidohydrolases/metabolism , Amino Acid Sequence , Dithiothreitol , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hydrogen-Ion Concentration , Kinetics , Metals, Heavy/pharmacology , Molecular Sequence Data , Molecular Weight , Mutagenesis, Site-Directed , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...