Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Synapse ; 69(12): 577-91, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26422464

ABSTRACT

Identification of dopamine D3 receptors (D3R) in vivo is important to understand several brain functions related to addiction. The goal of this work was to identify D3R binding of the dopamine D2 receptor (D2R)/D3R imaging agent, (18)F-fallypride. Brain slices from male Sprague-Dawley rats (n = 6) and New Zealand White rabbits (n = 6) were incubated with (18)F-fallypride and D3R selective agonist (R)-7-OH-DPAT (98-fold D3R selective). Rat slices were also treated with BP 897 (68-fold D3R selective partial agonist) and NGB 2904 (56-fold D3R selective antagonist). In vivo rat studies (n = 6) were done on Inveon PET using 18-37 MBq (18)F-fallypride and drug-induced displacement by (R)-7-OH-DPAT, BP 897 and NGB 2904. PET/CT imaging of wild type (WT, n = 2) and D2R knock-out (KO, n = 2) mice were carried out with (18)F-fallypride. (R)-7-OH-DPAT displaced binding of (18)F-fallypride, both in vitro and in vivo. In vitro, at 10 nM (R)-7-OH-DPAT, (18)F-fallypride binding in the rat ventral striatum (VST) and dorsal striatum (DST) and rabbit nucleus accumbens were reduced by ∼10-15%. At 10 µM (R)-7-OH-DPAT all regions in rat and rabbit were reduced by ≥85%. In vivo reductions for DST and VST before and after (R)-7-OH-DPAT were: low-dose (0.015 mg kg(-1)) DST -22%, VST -29%; high-dose (1.88 mg kg(-1)) DST -58%, VST -77%, suggesting D3R/D2R displacement. BP 897 and NGB 2904 competed with (18)F-fallypride in vitro, but unlike BP 897, NGB 2904 did not displace (18)F-fallypride in vivo. The D2R KO mice lacked (18)F-fallypride binding in the DST. In summary, our findings suggest that up to 20% of (18)F-fallypride may be bound to D3R sites in vivo.


Subject(s)
Benzamides/pharmacokinetics , Brain/diagnostic imaging , Positron-Emission Tomography , Pyrrolidines/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Receptors, Dopamine D3/metabolism , Animals , Brain/metabolism , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Fluorenes/pharmacology , Male , Mice , Mice, Inbred C57BL , Piperazines/pharmacology , Protein Binding , Rabbits , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D3/agonists , Receptors, Dopamine D3/antagonists & inhibitors , Species Specificity , Tetrahydronaphthalenes/pharmacology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...