Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(25): 10730-10736, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38872609

ABSTRACT

Rhombohedral boron carbide, often referred to as r-B4C, is a potential material for applications in optoelectronic and thermoelectric devices. From fundamental thin film growth and characterization, we investigate the film-substrate interface between the r-B4C films grown on 4H-SiC (0001̄) (C-face) and 4H-SiC (0001) (Si-face) during chemical vapor deposition (CVD) to find the origin for epitaxial growth solely observed on the C-face. We used high-resolution (scanning) transmission electron microscopy and electron energy loss spectroscopy to show that there is no surface roughness or additional carbon-based interlayer formation for either substrate. Based on Raman spectroscopy analysis, we also argue that carbon accumulation on the surface hinders the growth of continued epitaxial r-B4C in CVD.

2.
RSC Adv ; 12(16): 9828-9835, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35424916

ABSTRACT

Searching for new two-dimensional (2D) materials for the early and efficient detection and capture of toxic gas has received special attention from researchers. In this work, we investigate the adsorption of NO and CO molecules onto a silicene monolayer using first-principles calculations. Different numbers of adsorbates, as well as adsorption configurations, have been considered. The results show that up to four NO molecules can be chemically adsorbed onto the pristine monolayer with adsorption energies varying between -0.32 and -1.22 eV per molecule. In these cases, the gas adsorption induces feature-rich electronic behaviors, including magnetic semiconducting and half-metallicity, where the magnetic properties are produced mainly by the adsorbates. Except for two CO molecules adsorbing onto two adjacent Si atoms with an adsorption energy of -0.26 eV per molecule, other adsorption configurations show weak physisorption of CO molecules onto the pristine silicene platform. However, the sensitivity can be enhanced considerably by doping with Al atoms, drastically reducing the adsorption energy to between -0.19 and -0.71 eV per molecule. The doping and adsorption process may lead to either band gap opening or metallization, depending on its configuration. This study reveals the promising applicability of pristine and Al doped silicene monolayers as sensors for more than one single NO and CO molecule.

3.
Nanotechnology ; 32(9): 095703, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33147576

ABSTRACT

Polycrystalline permalloy 2D nanotraps with a thickness of 20 nm were studied using a Lorentz microscope associated with micro-magnetic simulations. Each trap was designed to create a single head-to-head domain wall. The traps consist of a few nanowires with an in-plane dimension of w nm × 1000 nm (w = 150, 200 and 250 nm). Some structures with an injection pad were also designed to create a single domain wall and propagate it through the structure with the said injection pad. A few of them were patterned to study the nucleation and propagation behavior of such nucleated domain walls using both horizontal magnetic field and injection pad approaches. The case of a domain wall created at the first corner of the trap with a wire width of 200 nm was systematically studied, while single and multiple domain walls can also be created and propagated with or without an injection structure. The characteristics of such movements were exploited with an emphasis on a single head-to-head domain wall.

4.
J Mol Graph Model ; 100: 107642, 2020 11.
Article in English | MEDLINE | ID: mdl-32688130

ABSTRACT

It is known that high spin-polarization and magnetism can be found even in materials with neither transition metals nor rare earths. In this paper, we report results of the structural design, electronic structure, magnetic and optical properties of new equiatomic quaternary Heusler (EQH) KCaBX (X = S and Se) compounds. Electron exchangecorrelation interactions are described by the Wu-Cohen (WC) functional and Tran-Blaha modified Becke-Johnson exchange (mBJ) potential. Ferromagnetic ordering is stable for the cubic structure of space group F43 m in which the K, Ca, B and X atoms are located at 4c, 4d, 4a and 4b Wyckoff positions, respectively. Quaternaries at hand exhibit a perfect spin-polarization around the Fermi level, which is a result of the half-metallicity with metallic spin-up channel and semiconductor spin-dn channel. The ferromagnetic half-metallic and spin-flip band gaps are 2.648(2.470) and 0.673(0.526), respectively, for KCaBS(KCaBSe). Both studied compounds have a total magnetic moment of 2.000 µB. Additionally, the strain effect on the electronic and magnetic properties is also examined. Finally, the optical properties of the KCaBX alloys are investigated for energies up to 25 eV. Optical spectra show the metallic behavior at extremely low energies and semiconductor nature at higher energies. Interestingly, KCaBS and KCaBSe exhibit prospective absorption properties with a quite large absorption coefficient in the ultraviolet regime.


Subject(s)
Electronics , Transition Elements , Alloys , Magnetics , Prospective Studies
5.
RSC Adv ; 10(43): 25609-25617, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-35518578

ABSTRACT

In this work, a new equiatomic quaternary Heusler (EQH) compound, MnVZrP, is predicted using first principles calculations. Simulations show the good stability of the material, suggesting experimental realization. Results show that MnVZrP is a magnetic semiconductor material, exhibiting semiconductor characteristics in both spin channels, however, with strong spin-polarization. Electronic band gaps of 0.97 and 0.47 eV are obtained in the spin-up and spin-dn states, respectively. Mainly the d-d coupling regulates the electronic band structure around the Fermi level. Strain effects on the electronic properties of the proposed compound are also investigated. Simulations give the total magnetic moment of 3 µ B satisfying the Slate-Pauling rule. The main magnetic contributions are given by the Mn and V constituents. The results presented here suggest the promising applicability of EQH MnVZrP as a spin-filter. Additionally, the elastic property calculations indicate the mechanical stability and elastic anisotropy. The work may be useful in the magnetic Heusler alloys field, introducing a new member to the small group of magnetic semiconductor EQH compounds for spin-filter applications.

6.
RSC Adv ; 8(26): 14539-14551, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35540750

ABSTRACT

We present a Lorentz microscopy study of polycrystalline permalloy 2D nanostructures with a thickness of 20 nm. Each structure was designed as a single domain wall trap. The trap comprises two horizontal nanowires with an in-plane dimension of 200 × 1000 nm2, and three tilted pads with different shapes. These structures allow us to create head-to-head domain walls, and these created walls can propagate in the structures by an external magnetic field. These designed traps were simulated using the micro-magnetic OOMMF simulation software. Those nanostructures were also patterned using electron beam lithography and focussed-ion beam techniques. This aims to determine the geometric parameters required to propagate a single magnetic domain wall in these structures reproducibly. Among the studied structures with one and two field directions, we found that the motion of a domain wall can be reproducibly driven by two alternative field directions in a trap which consists of the two horizontal nanowires and three 90°-tilted ones. We investigated systematically the viability of both single field and sequential switching of two field directions. Lorentz microscopy and micro-magnetic simulation results indicate that the propagation of a domain wall is strongly affected by the precise shape of the corner sections linking the trap elements, and the angles of the horizontal nanowires and tilted pads. Domain wall pinning and transformation of wall chirality are strongly correlated to the trap geometries. Our results are vital to design an optimal trap which supports a reproducible domain wall motion. This might also support a greater understanding of domain wall creation and propagation in magnetic nanowires which are of interest for concepts of high-density and ultrafast nonvolatile data storage devices, including racetrack memory and magnetic logic gates.

7.
RSC Adv ; 8(73): 41828-41835, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-35558803

ABSTRACT

A 2D polycrystalline permalloy domain wall trap nanostructure with a thickness of 20 nm was studied. The structure was alternatively designed and patterned using QCAD/L-Edit software and focused-ion beam technique. With this design, a magnetic domain wall can be created and propagated with a sequence of two-field directions in a Lorentz microscopy. The trap consists of two horizontal nanowires and three 90°-tilted ones. Each nanowire has an in-plane dimension of 200 × 1000 nm2. The trap corners were curved to allow a created domain wall that easily moves through the structure. A head-to-head domain-wall aims to create using a continuous field, this created wall can be propagated in the trap using a sequence of two-field directions. The designed trap was simulated using the Object Oriented Micro-Magnetic Framework software. Lorentz microscopy and simulation results indicate that the propagation of a domain wall is strongly affected by the precise roughness behavior of the trap elements. Domain wall pinning and transformation of wall chirality are sensitively correlated to the corner sections of the trap structure and field directions at a certain regime. Using the two-field direction method enables us to explore characteristics of the corner sections of the patterned trap nanostructure. This study is vital to fabricate an optimal nano-trap which supports a reproducible domain wall motion. This also suggests a useful method for the domain wall propagation using sequences of two-field directions. This work provides a better understanding of wall creation and propagation in polycrystalline permalloy curved nanowires which are of interest for concepts of nonvolatile data storage devices.

8.
Sci Rep ; 6: 29444, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27404130

ABSTRACT

Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/µm, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/µm with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.

9.
Nanotechnology ; 20(16): 165707, 2009 Apr 22.
Article in English | MEDLINE | ID: mdl-19420580

ABSTRACT

In this paper, a systematic investigation of the microstructure, high performance magnetic hardness as well as novel magnetic memory effect of the Pr(4)Fe(76)Co(10)B(6)Nb(3)Cu(1) nanocomposite magnet fabricated by conventional melt-spinning followed by annealing at temperatures ranging from 600 to 700 degrees C in Ar gas for nanocrystallization are presented and discussed. Transmission electron microscopy (TEM) observation confirms an ultrafine structure of bcc-Fe(Co) as a magnetically soft phase and Pr(2)Fe(14)B as a hard magnetic phase with a spring-exchange coupling in order to form the nanocomposite state. Electron diffraction analysis also indicates that the Co atoms together with Fe atoms form the Fe(70)Co(30) phase with a very high magnetic moment (2.5 mu(B)), leading to a high saturation magnetization of the system. High magnetic hardness is obtained in the optimally heat-treated specimen with coercivity H(c) = 3.8 kOe, remanence B(r) = 12.0 kG, M(r)/M(s) = 0.81 and maximum energy product (BH)(max) = 17.8 MG Oe, which is about a 25% improvement in comparison with recent results for similar compositions. High remanence and reduced remanence are the key factors in obtaining the high performance with low rare-earth concentration (only 4 at.%). High-resolution TEM analysis shows that there is a small amount of residual amorphous phase in the grain boundary, which plays a role of interphase to improve the exchange coupling. Otherwise, in terms of magnetic after-effect measurement, a magnetic memory effect was observed for the first time in an exchange-coupled hard magnet.

SELECTION OF CITATIONS
SEARCH DETAIL
...