Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 86(4): 335-345, 2024 May.
Article in English | MEDLINE | ID: mdl-38664242

ABSTRACT

In recent years, organophosphate esters (OPEs) have become one of the most common additives in various consumer products worldwide, therefore the exposure and impact of OPEs on human health are drawing a lot of attention. In this study, three metabolites of OPEs including bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), diphenyl phosphate (DPhP) and diethyl phosphate (DEP) were investigated in first-morning void urine samples taken from a population (age range: 3-76 years old) in Hanoi, Vietnam. The most dominant urinary OPE metabolite was DEP with the geometric mean of specific gravity adjust (SG-adjusted) concentration were 1960 ng mL-1 and detected frequency (DF) of 98%. Followed by DPhP (8.01 ng mL-1, DF: 100%) and BDCIPP (2.18 ng mL-1, DF: 51%). The results indicated that gender and age might have associations with the OPE metabolites variation in urine samples. The levels of OPE metabolites in urine samples from females were slightly higher than in males. An increase in age seems to have an association with a decrease in DPhP levels in urine. Exposure doses of parent OPEs were evaluated from the unadjusted urinary concentration of corresponding OPE metabolite. The estimated exposure doses of triethyl phosphate (TEP) (mean: 534,000 ng kg-1 d-1) were significantly higher than its corresponding reference dose, suggesting the high potential risk from the current exposure doses of TEP to human health. The results of this work provided the initial information on the occurrence of three OPE metabolites in urine from Hanoi, Vietnam and estimated exposure dose of corresponding parent OPEs.


Subject(s)
Environmental Exposure , Esters , Organophosphates , Humans , Vietnam , Organophosphates/urine , Middle Aged , Adult , Male , Female , Child , Adolescent , Aged , Child, Preschool , Young Adult , Environmental Exposure/analysis , Environmental Pollutants/urine , Environmental Monitoring
2.
Chemosphere ; 331: 138805, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37121286

ABSTRACT

In this study, an investigation on the pollution status, distribution, and ecological risk to the aquatic organisms of six organophosphate tri-esters (tri-OPEs) and two organophosphate tri-esters (di-OPEs) in surface water in urban Hanoi, Vietnam were conducted. In 37 surveyed water samples (6 rivers and 17 lakes), all eight targeted OPEs were discovered with a detection frequency (DF) of 41-100% and the concentration varied largely from below the method detection limit (

Subject(s)
Flame Retardants , Water Pollutants, Chemical , Animals , Rivers/chemistry , Water , Lakes , Vietnam , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Flame Retardants/analysis , Esters , Organophosphates , Risk Assessment , China
3.
Chemosphere ; 328: 138597, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028719

ABSTRACT

The presence and distribution of thirteen organophosphate flame retardants (OPFRs) were investigated in indoor air and dust samples collected in Hanoi, Vietnam. The total OPFRs (Æ©OPFRs) concentrations in indoor air and dust samples were 42.3-358 ng m-3 (median 101 ng m-3) and 1290-17,500 ng g-1 (median 7580 ng g-1), respectively. The profile of OPFRs in both indoor air and dust indicated that tris(1-chloro-2-propyl) phosphate (TCIPP) was the most dominant compound with a median concentration of 75.3 ng m-3 and 3620 ng g-1, contributing 75.2% and 46.1% to Æ©OPFRs concentrations in indoor air and dust, respectively, followed by tris(2-butoxyethyl) phosphate (TBOEP), with a median concentration of 16.3 ng m-3 and 2500 ng g-1, contributing 14.1% and 33.6% to Æ©OPFRs concentrations in indoor air and dust, respectively. The levels of OPFRs in the indoor air samples and corresponding indoor dust samples showed a strong positive correlation. The total estimated daily intakes (EDItotal) of Æ©OPFRs (via air inhalation, dust ingestion, and dermal absorption) for adults and toddlers under the median and high exposure scenarios were 36.7 and 160 ng kg-1 d-1, and 266 and 1270 ng kg-1 d-1, respectively. Among the investigated exposure pathways, dermal absorption was a primary exposure pathway to OPFRs for both toddlers and adults. The hazard quotients (HQ) ranged from 5.31 × 10-8 to 6.47 × 10-2 (<1), and the lifetime cancer risks (LCR) were from 2.05 × 10-11 to 7.37 × 10-8 (<10-6), indicating that human health risks from exposure to OPFRs in indoor environments are not significant.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Adult , Humans , Organophosphates/analysis , Environmental Monitoring , Flame Retardants/analysis , Dust/analysis , Air Pollution, Indoor/analysis , Vietnam , Environmental Exposure/analysis
4.
Environ Sci Pollut Res Int ; 28(32): 43885-43896, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33837942

ABSTRACT

This study investigated the occurrence, distribution of several additive brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and some novel brominated flame retardants (NBFRs) in urban indoor dust collected from ten inner districts of Hanoi, Vietnam to assess the contamination status, emission sources, as well as their associated human exposure through indoor dust ingestion and health risks. Total concentrations of PBDEs and NBFRs in indoor dust samples ranged from 43 to 480 ng g-1 (median 170 ng g-1) and from 56 to 2200 ng g-1 (median 180 ng g-1), respectively. The most abundant PBDE congener in these dust samples was BDE-209 with concentrations ranging from 29 to 360 ng g-1, accounting for 62.6-86.5% of total PBDE levels. Among the NBFRs analyzed, decabromodiphenyl ethane (DBDPE) was the predominant compound with a mean contribution of 98.6% total NBFR amounts. Significant concentrations of DBDPE were detected in all dust samples (median 180 ng g-1, range 54-2200 ng g-1), due to DBDPE as a substitute for deca-BDE. Other NBFRs such as 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), pentabromoethylbenzene (PBEB) and 2,2',4,4',5,5'-hexabromobiphenyl (BB-153) were found at very low levels. Based on the measured BFR concentrations, daily intake doses (IDs) of PBDEs and NBFRs via dust ingestion at exposure scenarios using the median and 95th percentile levels for both adults and children were calculated for risk assessment. The results showed that the daily exposure doses via dust ingestion of all compounds, even in the high-exposure scenarios were also lower than their reference dose (RfD) values. The lifetime cancer risks (LTCR) were much lower than the threshold level (10-6), which indicated the acceptable health risks resulting from indoor BFRs exposure for urban residents in Hanoi.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Adult , Air Pollution, Indoor/analysis , Child , Dust/analysis , Environmental Exposure/analysis , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Humans , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...