Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxicol Res ; 40(3): 389-408, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38911537

ABSTRACT

Exposure to n-hexane and its metabolite 2,5-hexandione (HD) is a well-known cause of neurotoxicity, particularly in the peripheral nervous system. To date, few studies have focused on the neurotoxic effects of HD on cognitive impairment. Exposure to HD and diabetes mellitus can exacerbate neurotoxicity. There are links among HD, diabetes mellitus, and cognitive impairment; however, the specific mechanisms underlying them remain unclear. Therefore, we aimed to elucidate the neurotoxic effects of HD on cognitive impairment in ob/ob (C57BL/6-Lepem1Shwl/Korl) mice. We found that HD induced cognitive impairment by altering the expression of genes (FN1, AGT, ACTA2, MYH11, MKI67, MET, CTGF, and CD44), miRNAs (mmu-miR15a-5p, mmu-miR-17-5p, and mmu-miR-29a-3p), transcription factors (transcription factor AP-2 alpha [TFAP2A], serum response factor [Srf], and paired box gene 4 [PAX4]), and signaling pathways (ERK/CERB, PI3K/AKT, GSK-3ß/p-tau/amyloid-ß), as well as by causing neuroinflammation (TREM1/DAP12/NF-κB), oxidative stress, and apoptosis. The prevalent use of n-hexane in various industrial applications (for instance, shoe manufacturing, printing inks, paints, and varnishes) suggests that individuals with elevated body weight and glucose levels and those employed in high-risk workplaces have greater probability of cognitive impairment. Therefore, implementing screening strategies for HD-induced cognitive dysfunction is crucial. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00228-1.

2.
Int Immunopharmacol ; 115: 109726, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36641890

ABSTRACT

Cognitive impairment and organic solvent exposure have been becoming public health concerns due to an increasingly aging population, increased life expectancy, urbanization, and industrialization. Converging evidence indicates the link between 1,2-diacetylbenzene (DAB), prolactin (PRL), risperidone, and cognitive impairment. However, these relationships remain unclear. We investigated the therapeutic properties of risperidone in DAB-induced cognitive impairment using both in vivo and in silico methods. Risperidone alleviated DAB-induced cognitive impairment in hippocampal mice, possibly by inhibiting GSK-3ß, ß-amyloid, CDK5, BACE, and tau hyperphosphorylation. Risperidone also attenuated the activation of TREM-1/DAP12/NLRP3/caspase-1/IL-1ß, and TLR4/NF-κB pathways caused by DAB. Furthermore, risperidone inhibited DAB-induced oxidative stress, advanced glycation end products, and proinflammatory cytokines, as well as increased the expression of Nrf2, IL-10, Stat3, MDM2, and catalase activity. On the other hand, risperidone activated the expression of IRS1, PI3K, AKT, BDNF, Drd2, Scna5, and Trt as well as reduced the Bax/Bcl2 ratio and Caspase-3 levels. In silico analyses identified the prolactin signaling pathway, miR-155-5p, miR-34a-5p, and CEBPB as the main molecular mechanisms involved in the pathophysiology of DAB-induced cognitive impairment and targeted by risperidone. Our results suggest that risperidone could be used to treat cognitive impairment caused by organic solvents, especially DAB.


Subject(s)
Cognitive Dysfunction , MicroRNAs , Mice , Animals , Risperidone/therapeutic use , Prolactin/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Signal Transduction
3.
Neurotoxicology ; 93: 45-59, 2022 12.
Article in English | MEDLINE | ID: mdl-36100143

ABSTRACT

We aimed to identify the molecular mechanisms through which prolactin protects against 1,2-Diacetylbenzene (DAB)-induced memory and motor impairments. The gene expression omnibus database (no. GSE119435), transcriptomic data, GeneMANIA, ToppGeneSuite, Metascape, STRING database, Cytoscape, and Autodock were used as the core tools in in-silico analyses. We observed that prolactin may improve memory and motor deficits caused by DAB via 13 genes (Scn5a, Lmntd1, LOC100360619, Rgs9, Srpk3, Syndig1l, Gpr88, Egr2, Ctxn3, Drd2, Ttr, Gpr6, and Ecel1) in young rats and 9 genes (Scn5a, Chat, RGD1560608, Ucma, Lrrc31, Gpr88, Col1a2, Cnbd1, and Ttr) in old rats. Almost all of these genes were downregulated in both young and old rats given DAB, but they were increased in both young and old rats given prolactin. Co-expression interactions were identified as the most important interactions (83.2 % for young rats and 100 % for old rats). The most important mechanisms associated with prolactin's ability to counteract DAB were identified, including "learning and memory," and "positive regulation of ion transport" in young rats, as well as "acetylcholine related pathways," "inflammatory response pathway," and "neurotransmitter release cycle" in old rats. We also identified several key miRNAs associated with memory and motor deficits, as well as prolactin and DAB exposure (rno-miR-141-3p, rno-miR-200a-3p, rno-miR-124-3p, rno-miR-26, and rno-let-7 families). The most significant transcription factors associated with differentially expressed gene regulation were Six3, Rxrg, Nkx26, and Tbx20. These findings will contribute to our understanding of the processes through which prolactin's beneficial effects counteract DAB-induced memory and motor deficits.


Subject(s)
MicroRNAs , Prolactin , Rats , Animals , Rats, Sprague-Dawley , MicroRNAs/genetics , MicroRNAs/metabolism , Acetophenones , Memory Disorders/chemically induced , Memory Disorders/genetics , Memory Disorders/prevention & control , Receptors, G-Protein-Coupled
5.
Neurotox Res ; 40(5): 1272-1291, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35781221

ABSTRACT

We aimed to evaluate the effects of 1,2-diacetylbenzene (DAB) and curcumin on neuroinflammation induced by DAB via triggering receptor expressed on myeloid cells 1 (TREM-1), Toll-like receptor 4 (TLR4), and NLR family pyrin domain containing 3 (NLP3)/calcium-dependent activator protein for secretion 1 (CAPS1)/interleukin 1 beta (IL1B) pathways; tau hyperphosphorylation; reactive oxygen species (ROS); and advanced glycation end-product (AGE) in microglia cells; and explore the molecular mechanisms involved in the key genes induced by DAB and targeted by curcumin in silico analysis. In this study, Western blot, quantitative polymerase chain reaction, and immunocytochemistry were used as the key methods in vitro. In silico analysis, GeneMANIA, ToppFun feature, Metascape, CHEA3, Cytoscape, Autodock, and MIENTURNET were the core approaches used. Curcumin inhibited both the DAB-induced TREM-1/DAP12/NLRP3/caspase-1/IL1B pathway and the TLR4/NF-κB pathway. In BV2 cells, curcumin inhibited ROS, AGE, hyperphosphorylation, glycogen synthase kinase-3ß (GSK-3ß), and ß-amyloid while activating nuclear factor erythroid 2-related factor 2 (Nrf2) expression. In silico studies showed that tumor necrosis factor (TNF), IL6, NFKB1, IL10, and IL1B, as well as MTF1 and ZNF267, were shown to be important genes and transcription factors in the pathogenesis of cognitive impairment produced by DAB and curcumin. Three significant miRNAs (hsa-miR-26a-5p, hsa-miR-203a-3p, and hsa-miR-155-5p) implicated in the etiology of DAB-induced cognitive impairment and targeted by curcumin were also identified. Inflammation and cytokine-associated pathways, Alzheimer's disease, and cognitive impairment were characterized as the most significant biological processes implicated in genes, miRNAs, and transcription factors induced by DAB and targeted by curcumin. Our findings provide new insight into fundamental molecular mechanisms implicated in the pathogenesis of cognitive impairment caused by DAB, particularly the effects of neuroinflammation. Furthermore, this study suggests that curcumin might be a promising therapeutic molecule for cognitive impairment treatment through modulating neuroinflammatory responses.


Subject(s)
Curcumin , MicroRNAs , Benzene/pharmacology , Calmodulin/metabolism , Calmodulin/pharmacology , Caspases/metabolism , Curcumin/pharmacology , Diacetyl/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Tumor Necrosis Factors/metabolism , Tumor Necrosis Factors/pharmacology
6.
Int Immunopharmacol ; 108: 108901, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35729834

ABSTRACT

Memory loss is the most common occurrence of dementia in the elderly population. Evidence shows 1,2-Diacetylbenzene (DAB) can exacerbate cerebral dysfunction. The molecular mechanisms involved in DAB actions in the hippocampus have not been well elucidated to date. qPCR, western blot, Morris water maze, and RNAseq analysis were used to identify the association between inflammation and hyperphosphorylated tau in male DAB-treated mice (1 or 5 mg/kg/day), rats (3 mg/kg/day), in vitro BV2 microglial cells (1 or 5 µM), and the hippocampal transcriptome of male DAB-treated rats. We found that DAB induces memory deficits by activating pro-inflammatory cytokines as well as down-regulating memory and learning genes. Several genes involved in learning, memory, and behavior induced by DAB (e.g., PRL, Pit-1, PRLR, Ttr, Notch2, Ntsr1, C5ar2, Cd74) were not changed or downregulated in young rats, but upregulated in old rats. Detoxification pathways were upregulated in young rats treated with DAB, whereas prolactin (PRL) signaling pathways were upregulated in old DAB-treated rats. Further work is needed to gain a better understanding of the roles of PRL during aging.


Subject(s)
Cytokines , Prolactin , Acetophenones/pharmacology , Aged , Animals , Cytokines/metabolism , Hippocampus/metabolism , Humans , Male , Maze Learning , Memory Disorders/metabolism , Mice , Prolactin/metabolism , Prolactin/pharmacology , Rats , Receptor, Anaphylatoxin C5a/metabolism
7.
Environ Sci Pollut Res Int ; 29(14): 20379-20397, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34738213

ABSTRACT

We aim to examine the association between chemical mixtures and obesity. Blood and urinary levels of tween-six chemicals were measured in adults who participated in the KoNEHS. We identified the associations of chemicals with obesity using linear regression models. Weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) were conducted as secondary analyses. Of the 3,692 participants included in the analysis, 18.0% had obesity. In the logistic regression model, mercury (Hg), lead (Pb), and 3PBA levels were associated with obesity, and significant trends were observed for these chemical tertiles (p < 0.001). Hg, Pb, and 3PBA levels were also associated with BMI. The WQS index was significantly associated with both obesity (OR = 2.15, 95% CI: 2.11-2.20) and BMI (ß = 0.39, 95% CI: 0.37-0.51). The qgcomp index also found a significant association between chemicals and both obesity (OR = 1.70, 95% CI: 1.56-1.85) and BMI (ß = 0.40, 95% CI: 0.39-0.41). Hg, Pb, and 3PBA were the most heavily weighed chemicals in these models. In BKMR analysis, the overall effect of the mixture was significantly associated with obesity. Hg, Pb, and 3PBA showed positive trends and were observed as the most important factors associated with obesity. Given increasing exposure to chemicals, there is a need to investigate the associations between chemical exposures, either separately or together, and incident obesity risk factors in well-characterized cohorts of different populations, and to identify potential approaches to chemical exposure prevention.


Subject(s)
Insecticides , Metals, Heavy , Pyrethrins , Adult , Bayes Theorem , Humans , Obesity/epidemiology
8.
Environ Sci Pollut Res Int ; 29(3): 4574-4586, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34414543

ABSTRACT

Little is known about associations between depression and serum heavy metal levels, dietary vitamin intakes. Thus, we sought to determine the nature of these associations and to predict risks of depression using marginal effects. A data set of 16,371 individuals aged ≥10 years that participated in Korea National Health and Nutrition Examination Surveys (KNHANES) conducted from 2009 to 2017 (excluding 2014 and 2015) was used to obtain information on sociodemographics, family histories, lifestyles, serum heavy metal levels, food intakes, and depression. Serum cadmium (Cd) and lead (Pb) levels were analyzed by graphite furnace atomic absorption spectrometry and mercury (Hg) levels using a mercury analyzer. Daily vitamin intakes were calculated by 24-h dietary recall. The results obtained showed that females are at higher risk of depression than males. A doubling of serum Cd was associated with a 21% increase in depression (AOR 1.21, 95% CI: 1.07-1.37, p = 0.002), whereas twofold increases in daily vitamin B1, B3 and vitamin A intakes reduced the risk of depression by 17% (0.83, 95% CI: 0.73-0.95, p = 0.005), 20% (0.80, 95% CI: 0.70-0.91, p = 0.001), and 8% (0.92, 95% CI: 0.85-0.99, p = 0.020), respectively. Interactions between heavy metals, vitamin intakes, and sex did not influence the risk of depression. The result shows that increased daily dietary vitamin intake might protect the public against depression. Further studies are needed to reduce the risks posed by heavy metals and to determine more comprehensively the effects of daily dietary vitamin intake on depression.


Subject(s)
Environmental Science , Mercury , Metals, Heavy , Cadmium , Cross-Sectional Studies , Depression , Female , Humans , Male , Vitamins
9.
Neuroendocrinology ; 112(5): 427-445, 2022.
Article in English | MEDLINE | ID: mdl-34126620

ABSTRACT

BACKGROUND: Prolactin (PRL) is one of the most diverse pituitary hormones and is known to modulate normal neuronal function and neurodegenerative conditions. Many studies have described the influence that PRL has on the central nervous system and addressed its contribution to neurodegeneration, but little is known about the mechanisms responsible for the effects of PRL on neurodegenerative disorders, especially on Alzheimer's disease (AD) and Parkinson's disease (PD). SUMMARY: We review and summarize the existing literature and current understanding of the roles of PRL on various PRL aspects of AD and PD. KEY MESSAGES: In general, PRL is viewed as a promising molecule for the treatment of AD and PD. Modulation of PRL functions and targeting of immune mechanisms are needed to devise preventive or therapeutic strategies.


Subject(s)
Alzheimer Disease , Parkinson Disease , Humans , Neurons , Prolactin
10.
Sci Rep ; 11(1): 14664, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282223

ABSTRACT

The prevalence of cardiovascular diseases (CVDs) in Korea tends to be increasing. It has worsened during the COVID-19 pandemic. Increasing evidence shows heavy metals are associated with increased CVD risk. We aimed to determine the association between the serum heavy metal levels and 10-year risk of CVDs and to predict risks of CVDs based on marginal effects. Heavy metals were measured by a graphite furnace atomic absorption spectrometry and direct mercury analyzer. The results show a significant relationship between the increase in cadmium, lead, mercury, hs-CRP levels and the 10-year risk of CVD after adjustment for serum cotinine, age group, sex, body mass index, a family history of CVDs, diabetes or hyperlipidemia, high-risk drinking, physical activity, and diabetes. A doubling of serum cadmium, lead, mercury, and hs-CRP was associated with the increase in the 10-year risk of CVD by 0.14%, 0.10%, 0.11% and 0.22%, respectively. Therefore, a special concern should be given to the harmful impacts of heavy metals on the 10-year risk of CVD. It is important to develop a prevention strategy targeting the high-risk population to slow down this progression to risk factors related to heavy metals and reduce prevalence. Remarkedly, hs-CRP is the most validated and widely used inflammatory marker, and could be a potential clinical value in predicting and monitoring CVDs.


Subject(s)
C-Reactive Protein/analysis , Cardiovascular Diseases/epidemiology , Metals, Heavy/blood , Adult , Aged , Female , Humans , Male , Middle Aged , Prevalence , Republic of Korea/epidemiology , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...