Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
mBio ; 9(5)2018 09 04.
Article in English | MEDLINE | ID: mdl-30181247

ABSTRACT

Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovar Typhimurium, is among the leading etiologic agents of bacterial enterocolitis globally and a well-characterized cause of invasive disease (iNTS) in sub-Saharan Africa. In contrast, S Typhimurium is poorly defined in Southeast Asia, a known hot spot for zoonotic disease with a recently described burden of iNTS disease. Here, we aimed to add insight into the epidemiology and potential impact of zoonotic transfer and antimicrobial resistance (AMR) in S Typhimurium associated with iNTS and enterocolitis in Vietnam. We performed whole-genome sequencing and phylogenetic reconstruction on 85 human (enterocolitis, carriage, and iNTS) and 113 animal S Typhimurium isolates isolated in Vietnam. We found limited evidence for the zoonotic transmission of S Typhimurium. However, we describe a chain of events where a pandemic monophasic variant of S Typhimurium (serovar I:4,[5],12:i:- sequence type 34 [ST34]) has been introduced into Vietnam, reacquired a phase 2 flagellum, and acquired an IncHI2 multidrug-resistant plasmid. Notably, these novel biphasic ST34 S Typhimurium variants were significantly associated with iNTS in Vietnamese HIV-infected patients. Our study represents the first characterization of novel iNTS organisms isolated outside sub-Saharan Africa and outlines a new pathway for the emergence of alternative Salmonella variants into susceptible human populations.IMPORTANCESalmonella Typhimurium is a major diarrheal pathogen and associated with invasive nontyphoid Salmonella (iNTS) disease in vulnerable populations. We present the first characterization of iNTS organisms in Southeast Asia and describe a different evolutionary trajectory from that of organisms causing iNTS in sub-Saharan Africa. In Vietnam, the globally distributed monophasic variant of Salmonella Typhimurium, the serovar I:4,[5],12:i:- ST34 clone, has reacquired a phase 2 flagellum and gained a multidrug-resistant plasmid to become associated with iNTS disease in HIV-infected patients. We document distinct communities of S Typhimurium and I:4,[5],12:i:- in animals and humans in Vietnam, despite the greater mixing of these host populations here. These data highlight the importance of whole-genome sequencing surveillance in a One Health context in understanding the evolution and spread of resistant bacterial infections.


Subject(s)
Drug Resistance, Multiple, Bacterial , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella typhimurium/classification , Salmonella typhimurium/drug effects , Animals , Bacteremia/epidemiology , Bacteremia/microbiology , Carrier State/epidemiology , Carrier State/microbiology , Chickens , Disease Transmission, Infectious , Ducks , Gastroenteritis/epidemiology , Gastroenteritis/microbiology , Genetic Variation , Genotype , HIV Infections/complications , Humans , Immunocompromised Host , Molecular Epidemiology , Salmonella Infections/transmission , Salmonella Infections, Animal/transmission , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Swine , Vietnam/epidemiology , Whole Genome Sequencing , Zoonoses/epidemiology , Zoonoses/microbiology , Zoonoses/transmission
2.
J Med Microbiol ; 64(10): 1162-1169, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26297024

ABSTRACT

Acinetobacter baumannii has become one of the major infection threats in intensive care units (ICUs) globally. Since 2008, A. baumannii has been the leading cause of ventilator-associated pneumonia (VAP) in our ICU at an infectious disease hospital in southern Vietnam. The emergence of this pathogen in our setting is consistent with the persistence of a specific clone exhibiting resistance to carbapenems. Antimicrobial combinations may be a strategy to treat infections caused by these carbapenem-resistant A. baumannii. Therefore, we assessed potential antimicrobial combinations against local carbapenem-resistant A. baumannii by measuring in vitro interactions of colistin with four antimicrobials that are locally certified for treating VAP. We first performed antimicrobial susceptibility testing and multilocus variable number tandem repeat analysis (MLVA) genotyping on 74 A. baumannii isolated from quantitative tracheal aspirates from patients with VAP over an 18-month period. These 74 isolates could be subdivided into 21 main clusters by MLVA and >80 % were resistant to carbapenems. We selected 56 representative isolates for in vitro combination synergy testing. Synergy was observed in four (7 %), seven (13 %), 20 (36 %) and 38 (68 %) isolates with combinations of colistin with ceftazidime, ceftriaxone, imipenem and meropenem, respectively. Notably, more carbapenem-resistant A. baumannii isolates (36/43; 84 %) exhibited synergistic activity with a combination of colistin and meropenem than carbapenem-susceptible A. baumannii isolates (2/13; 15 %) (P = 0.023; Fisher's exact test). Our findings suggest that combinations of colistin and meropenem should be considered when treating carbapenem-resistant A. baumannii infections in Vietnam, and we advocate clinical trials investigating combination therapy for VAP.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Colistin/pharmacology , Drug Synergism , Pneumonia, Ventilator-Associated/microbiology , Acinetobacter baumannii/classification , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Cluster Analysis , Genotype , Hospitals , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Pneumonia, Ventilator-Associated/epidemiology , Vietnam/epidemiology , beta-Lactam Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...