Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Radiopharm Chem ; 7(1): 10, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35507241

ABSTRACT

BACKGROUND: Noninvasive molecular imaging using peptides and biomolecules labelled with positron emitters has become important for detection of cancer and other diseases with PET (positron emission tomography). The positron emitting radionuclide fluorine-18 is widely available in high yield from cyclotrons and has favorable decay (t1/2 109.7 min) and imaging properties. 18F-Labelling of biomolecules and peptides for use as radiotracers is customarily achieved in a two-step approach, which can be challenging to automate. 6-[18F]Fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([18F]F-Py-TFP) is a versatile 18F-prosthetic group for this purpose, which can be rapidly be produced in an one-step approach on solid support. This work details an automated procedure on the cassette-based GE FASTlab™ platform for the labeling of a peptidomimetic, exemplified by the case of using the Glu-CO-Lys motif to produce [18F]DCFPyL, a ligand targeting the prostate specific membrane antigen (PSMA). RESULTS: From fluorine-18 delivery a fully automated two-step radiosynthesis of [18F]DCFPyL was completed in 56 min with an overall end of synthesis yield as high as 37% using solid phase extraction (SPE) purification on the GE FASTlab™ platform. CONCLUSIONS: Putatively, this radiolabeling methodology is inherently amenable to automation with a diverse set of synthesis modules, and it should generalize for production of a broad spectrum of biomolecule-based radiotracers for use in PET imaging.

2.
J Labelled Comp Radiopharm ; 57(13): 715-20, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25347957

ABSTRACT

We have investigated the use of cyclic sulfamidates as precursors to yield secondary amines as building blocks for subsequent reaction with carboxylic acids and acyl chlorides. The preparation of the protonated form of [(18)F]-N-(2-fluoro-ethyl)-N-methylamine from the corresponding cyclic sulfamidate proceeded within a one pot two-step procedure (81 ± 12%, n = 10). The secondary amine reacted readily with acyl chlorides and/or carboxylic acids giving amides with yields ranging from 4 to 17% at the end of synthesis (182 ± 12 min). The new methodology provides a practical approach for the labelling of molecules where intramolecular cyclisation of precursors is favoured under typical radiofluorination conditions.


Subject(s)
Ethylamines/chemical synthesis , Fluorine Radioisotopes/chemistry , Radiopharmaceuticals/chemical synthesis , Ethylamines/chemistry , Positron-Emission Tomography
3.
Curr Top Med Chem ; 14(7): 875-900, 2014.
Article in English | MEDLINE | ID: mdl-24484425

ABSTRACT

Positron (ß(+)) emission tomography (PET) is a powerful, noninvasive tool for the in vivo, three-dimensional imaging of physiological structures and biochemical pathways. The continued growth of PET imaging relies on a corresponding increase in access to radiopharmaceuticals (biologically active molecules labeled with short-lived radionuclides such as fluorine-18). This unique need to incorporate the short-lived fluorine-18 atom (t1/2 = 109.77 min) as late in the synthetic pathway as possible has made development of methodologies that enable rapid and efficient late stage fluorination an area of research within its own right. In this review we describe strategies for radiolabeling with fluorine-18, including classical fluorine-18 radiochemistry and emerging techniques for late stage fluorination reactions, as well as labeling technologies such as microfluidics and solid-phase radiochemistry. The utility of fluorine-18 labeled radiopharmaceuticals is showcased through recent applications of PET imaging in the healthcare, personalized medicine and drug discovery settings.


Subject(s)
Drug Design , Fluorine Radioisotopes/chemistry , Halogenation , Radiopharmaceuticals/chemistry , Animals , Humans , Positron-Emission Tomography , Radiochemistry
4.
Appl Radiat Isot ; 70(8): 1779-83, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22503515

ABSTRACT

In order to image the translocator protein (TSPO) 18kDa in the clinic using positron emission tomography (PET) imaging, we had a cause to prepare [(11)C]PBR28. In this communication we highlight our novel, recently developed, one-pot synthesis of the desmethyl-PBR28 precursor, as well as present an optimized fully automated preparation of [(11)C]PBR28 using a GE TRACERlab FX(C-Pro). Following radiolabelling, purification is achieved by HPLC and, to the best of our knowledge, the first reported example of reconstituting [(11)C]PBR28 into ethanolic saline using solid-phase extraction (SPE). This procedure is operationally simple, and provides high quality doses of [(11)C]PBR28 suitable for use in clinical PET imaging studies. Typical radiochemical yield using the optimized method is 3.6% yield (EOS, n=3), radiochemical and chemical purity are consistently >99%, and specific activities are 14,523Ci/mmol.


Subject(s)
Acetamides/chemistry , Automation , Carbon Radioisotopes , Pyridines/chemistry , Radiopharmaceuticals/chemical synthesis , Receptors, GABA/chemistry , Chromatography, High Pressure Liquid , Quality Control
5.
J Labelled Comp Radiopharm ; 54(6): 292-307, 2011 May 30.
Article in English | MEDLINE | ID: mdl-21769163

ABSTRACT

The field of radiochemistry is moving towards exclusive use of automated synthesis modules for production of clinical radiopharmaceutical doses. Such a move comes with many advantages, but also presents radiochemists with the challenge of re-configuring synthesis modules for production of radiopharmaceuticals that require non-conventional radiochemistry whilst maintaining full automation. This review showcases the versatility of the Tracerlab FX(FN) synthesis module by presenting simple, fully automated methods for producing [(18)F]FLT, [(18)F]FAZA, [(18)F]MPPF, [(18)F]FEOBV, [(18)F]sodium fluoride, [(18)F]fluorocholine and [(18)F]SFB.

6.
Appl Radiat Isot ; 69(2): 403-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21115355

ABSTRACT

Modifications of a GE TracerLab FX(C-Pro), which can be implemented for solid-phase [(11)C]methylation are described. The simplified procedure for synthesis of [(11)C]choline uses a single Sep-Pak CM-Light cation-exchange cartridge for both solid-supported reaction and purification. Compared with the commonly used two Sep-Pak method, the low back-pressure of this Sep-Pak enables efficient and reliable production of [(11)C]choline using a TracerLab FX(C-Pro) without requirement for any gas pressure adjustment. Typical radiochemical yields (RCY) are >60%, radiochemical purity (RCP) is 99.9% and levels of residual precursor in the final product, which may inhibit the uptake of [(11)C]choline, are reduced to 1 µg/mL. Similarly, modification of a GE TracerLab FX(FN) is reported which enables gas-phase production of [(18)F]fluoromethylcholine, suitable for pre-clinical use, (in 4-6% RCY and >99.7% RCP) using a related Sep-Pak method. These modifications can be utilized for solid-phase [(11)C]methylation and [(18)F]fluoromethylation of other radiotracers, and allow straightforward switching to other module configurations for solution-phase radiochemistry or loop chemistry. In addition, we report a convenient HPLC ion chromatography method, which can monitor residual precursor and the radiochemical purity of product at the same time, providing highly efficient quality control for routine clinical application. The reported HPLC method is appropriate for analysis of doses of both [(11)C]choline and [(18)F]fluoromethylcholine, and eliminates the need for a GC method to determine residual precursor levels.


Subject(s)
Choline/analogs & derivatives , Choline/chemical synthesis , Isotope Labeling/methods , Automation, Laboratory , Carbon Radioisotopes , Chromatography, High Pressure Liquid , Fluorine Radioisotopes/chemistry , Quality Control , Radiopharmaceuticals/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...