Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Psychol Med ; 44(9): 1867-78, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24093462

ABSTRACT

BACKGROUND: Depressive symptoms are prominent psychopathological features of Huntington's disease (HD), making a negative impact on social functioning and well-being. METHOD: We compared the frequencies of a history of depression, previous suicide attempts and current subthreshold depression between 61 early-stage HD participants and 40 matched controls. The HD group was then split based on the overall HD group's median Hospital Anxiety and Depression Scale-depression score into a group of 30 non-depressed participants (mean 0.8, s.d. = 0.7) and a group of 31 participants with subthreshold depressive symptoms (mean 7.3, s.d. = 3.5) to explore the neuroanatomy underlying subthreshold depressive symptoms in HD using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). RESULTS: Frequencies of history of depression, previous suicide attempts or current subthreshold depressive symptoms were higher in HD than in controls. The severity of current depressive symptoms was also higher in HD, but not associated with the severity of HD motor signs or disease burden. Compared with the non-depressed HD group DTI revealed lower fractional anisotropy (FA) values in the frontal cortex, anterior cingulate cortex, insula and cerebellum of the HD group with subthreshold depressive symptoms. In contrast, VBM measures were similar in both HD groups. A history of depression, the severity of HD motor signs or disease burden did not correlate with FA values of these regions. CONCLUSIONS: Current subthreshold depressive symptoms in early HD are associated with microstructural changes - without concomitant brain volume loss - in brain regions known to be involved in major depressive disorder, but not those typically associated with HD pathology.


Subject(s)
Cerebellum/pathology , Cerebral Cortex/pathology , Depression/pathology , Huntington Disease/pathology , Magnetic Resonance Imaging/methods , Adult , Depression/etiology , Diffusion Tensor Imaging/methods , Humans , Huntington Disease/complications , Huntington Disease/physiopathology , Middle Aged , Severity of Illness Index , Suicide, Attempted
2.
AJNR Am J Neuroradiol ; 31(6): 1036-41, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20150305

ABSTRACT

BACKGROUND AND PURPOSE: Longitudinal MR imaging measures provide an opportunity to track progression in HD before the emergence of clinical symptoms. This may prove useful in assessing disease-modifying treatments. We investigated how caudate and global volumes change as HD progresses from premanifest to early disease. MATERIALS AND METHODS: Forty HD gene-positive individuals and 19 controls underwent serial volumetric MR imaging (baseline, 12 and 27 months; 2 or 3 scans per person). At baseline, 3 patients with HD were premanifest but developed overt motor features during the study, and 37 had early HD. All had dates of motor onset recorded. Caudates, lateral ventricles, and TIVs were measured using semiautomated procedures. Linear mixed models were used to investigate differences between HD and controls in relation to motor onset, controlling for TIV, sex, and age. RESULTS: Extrapolating backwards in time, we found that differences in caudate and ventricular volumes between patients with HD and controls were evident 14 and 5 years, respectively, before motor onset (P < .05). At onset, caudate volume was 2.58 mL smaller than that in controls (P < .0001); ventricular volume was 9.27 mL larger (P < .0001). HD caudate atrophy rates were linear, showed low variability between subjects, and were approximately 10-fold higher than those in controls (P < .001). HD ventricular enlargement rates were variable between subjects, were approximately 4-fold higher than those in controls at onset (P < .001), and accelerated with disease duration (P = .02). CONCLUSIONS: We provide evidence of acceleration of global atrophy in HD with disproportionate caudate involvement. Both caudate and global measures may be of use as early markers of HD pathology.


Subject(s)
Caudate Nucleus/pathology , Huntington Disease/pathology , Lateral Ventricles/pathology , Magnetic Resonance Imaging , Adult , Age of Onset , Aged , Atrophy , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Retrospective Studies , Young Adult
3.
Neuroscience ; 164(1): 205-19, 2009 Nov 24.
Article in English | MEDLINE | ID: mdl-19409230

ABSTRACT

The known genetic mutation causing Huntington's disease (HD) makes this disease an important model to study links between gene and brain function. An autosomal dominant family history and the availability of a sensitive and specific genetic test allow pre-clinical diagnosis many years before the onset of any typical clinical signs. This review summarizes recent magnetic resonance imaging (MRI)-based findings in HD with a focus on the requirements if imaging is to be used in treatment trials. Despite its monogenetic cause, HD presents with a range of clinical manifestations, not explained by variation in the number of CAG repeats in the affected population. Neuroimaging studies have revealed a complex pattern of structural and functional changes affecting widespread cortical and subcortical regions far beyond the confines of the striatal degeneration that characterizes this disorder. Besides striatal dysfunction, functional imaging studies have reported a variable pattern of increased and decreased activation in cortical regions in both pre-clinical and clinically manifest HD-gene mutation carriers. Beyond regional brain activation changes, evidence from functional and diffusion-weighted MRI further suggests disrupted connectivity between corticocortical and corticostriatal areas. However, substantial inconsistencies with respect to structural and functional changes have been reported in a number of studies. Possible explanations include methodological factors and differences in study samples. There may also be biological explanations but these are poorly characterized and understood at present. Additional insights into this phenotypic variability derived from study of mouse models are presented to explore this phenomenon.


Subject(s)
Huntington Disease/pathology , Huntington Disease/physiopathology , Magnetic Resonance Imaging/methods , Animals , Biomarkers , Clinical Trials as Topic/methods , Humans , Huntington Disease/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL