Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(9): 093527, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182470

ABSTRACT

Capacitive plasma pickup is a well-known and difficult problem for plasma-facing edge diagnostics. This problem must be addressed to ensure an accurate and robust interpretation of the real signal measurements vs noise. The Faraday cup fast ion loss detector array of the Joint European Torus (JET) is particularly prone to this issue and can be used as a testbed to prototype solutions. The issue of separation and distinction between warranted fast ion signal and electromagnetic plasma noise has traditionally been solved with hardware modifications, but a more versatile post-processing approach is of great interest. This work presents post-processing techniques to characterize the signal noise. While hardware changes and advancements may be limited, the combination with post-processing procedures allows for more rapid and robust analysis of measurements. The characterization of plasma pickup noise is examined for alpha losses in a discharge from JET's tritium campaign. In addition to highlighting the post-processing methodology, the spatial sensitivity of the detector array is also examined, which presents significant advantages for the physical interpretation of fast ion losses.

2.
Rev Sci Instrum ; 89(10): 106101, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399901

ABSTRACT

Internal diamagnetic flux measurements, with measurement loops and compensation magnetic probes inside the vacuum vessel, are now available on the ASDEX Upgrade tokamak. The measured diamagnetic flux is compared to that predicted by simulations and calculated from equilibrium reconstruction. The diamagnetic flux measured at 2 positions separated toroidally by 180° in the vacuum vessel is compared.

3.
Rev Sci Instrum ; 88(8): 083509, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28863658

ABSTRACT

The Motional Stark Effect (MSE) diagnostic is a well established technique to infer the local internal magnetic field in fusion plasmas. In this paper, the existing forward model which describes the MSE data is extended by the Zeeman effect, fine-structure, and relativistic corrections in the interpretation of the MSE spectra for different experimental conditions at the tokamak ASDEX Upgrade. The contribution of the non-Local Thermodynamic Equilibrium (non-LTE) populations among the magnetic sub-levels and the Zeeman effect on the derived plasma parameters is different. The obtained pitch angle is changed by 3°…4° and by 0.5°…1° including the non-LTE and the Zeeman effects into the standard statistical MSE model. The total correction is about 4°. Moreover, the variation of the magnetic field strength is significantly changed by 2.2% due to the Zeeman effect only. While the data on the derived pitch angle still could not be tested against the other diagnostics, the results from an equilibrium reconstruction solver confirm the obtained values for magnetic field strength.

4.
Rev Sci Instrum ; 87(11): 11E556, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910694

ABSTRACT

In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

5.
Rev Sci Instrum ; 84(11): 113503, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24295436

ABSTRACT

A spectrally resolved Motional Stark Effect (MSE) diagnostic has been installed at ASDEX Upgrade. The MSE data have been fitted by a forward model providing access to information about the magnetic field in the plasma interior [R. Reimer, A. Dinklage, J. Geiger et al., Contrib. Plasma Phys. 50, 731-735 (2010)]. The forward model for the beam emission spectra comprises also the fast ion Dα signal [W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535-615 (1994)] and the smearing on the CCD-chip. The calculated magnetic field data as well as the revealed (dia)magnetic effects are consistent with the results from equilibrium reconstruction solver. Measurements of the direction of the magnetic field are affected by unknown and varying polarization effects in the observation.

6.
Phys Rev Lett ; 107(13): 135004, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-22026864

ABSTRACT

New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.

7.
Phys Rev Lett ; 87(11): 115001, 2001 Sep 10.
Article in English | MEDLINE | ID: mdl-11531529

ABSTRACT

Simultaneous current ramping and application of lower hybrid heating and current drive (LHCD) have produced a region with zero current density within measurement errors in the core ( r/a< or =0.2) of JET tokamak optimized shear discharges. The reduction of core current density is consistent with a simple physical explanation and numerical simulations of radial current diffusion including the effects of LHCD. However, the core current density is clamped at zero, indicating the existence of a physical mechanism which prevents it from becoming negative.

8.
Phys Rev Lett ; 87(8): 085002, 2001 Aug 20.
Article in English | MEDLINE | ID: mdl-11497949

ABSTRACT

In the ASDEX Upgrade tokamak, high poloidal beta up to beta(pol) = 3 at the Greenwald density with H-mode confinement has been reached. Because of the high beta, the plasma current is driven almost fully noninductively, consisting of 51% bootstrap and 43% neutral beam driven current. To reach these conditions the discharge is operated at low plasma current ( I(P) = 400 kA) and high neutral beam heating power ( P(NBI) = 10 MW). The discharge combines an edge (H mode) and internal transport barrier at high densities without confinement-limiting MHD activities. The extrapolation to higher plasma currents may offer a promising way for an advanced scenario based fusion reactor.

SELECTION OF CITATIONS
SEARCH DETAIL
...