Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Imaging Biol ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37945971

ABSTRACT

PURPOSE: This study aimed to develop a biocompatible oximetric electron paramagnetic resonance (EPR) spin probe with reduced self-relaxation, and sensitivity to oxygen for a higher signal-to-noise ratio and longer relaxation times at high oxygen concentration, compared to the reference spin probe OX071. PROCEDURES: SOX71 was synthesized by succinylation of the twelve alcohol groups of OX071 spin probe and characterized by EPR at X-Band (9.5 GHz) and at low field (720 MHz). The biocompatibility of SOX71 was tested in vitro and in vivo in mice. A pharmacokinetic study was performed to determine the best time frame for EPR imaging. Finally, a proof-of-concept EPR oxygen imaging was performed on a mouse model of a fibrosarcoma tumor. RESULTS: SOX71 was synthesized in one step from OX071. SOX71 exhibits a narrow line EPR spectrum with a peak-to-peak linewidth of 66 mG, similar to OX071. SOX71 does not bind to albumin nor show cell toxicity for the concentrations tested up to 5 mM. No toxicity was observed after systemic delivery via intraperitoneal injection in mice at twice the dose required for EPR imaging. After the injection, the probe is readily absorbed into the bloodstream, with a peak blood concentration half an hour, post-injection. Then, the probe is quickly cleared by the kidney with a half-life of ~ 45 min. SOX71 shows long relaxation times under anoxic condition (T1e = 9.5 µs and T2e = 5.1 µs; [SOX71] = 1 mM in PBS at 37 °C, pO2 = 0 mmHg, 720 MHz). Both the relaxation rates R1e and R2e show a decreased sensitivity to pO2, leading to twice longer relaxation times under room air conditions (pO2 = 159 mmHg) compared to OX071. This is ideal for oxygen imaging in samples with a wide range of pO2. Both the relaxation rates R1e and R2e show a decreased sensitivity to self-relaxation compared to OX071, with a negligible effect of the probe concentration on R1e. SOX71 was successfully applied to image oxygen in a tumor. CONCLUSION: SOX71, a succinylated derivative of OX071 was synthesized, characterized, and applied for in vivo EPR tumor oxygen imaging. SOX71 is highly biocompatible, and shows decreased sensitivity to oxygen and self-relaxation. This first report suggests that SOX71 is superior to OX071 for absolute oxygen mapping under a broad range of pO2 values.

2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511427

ABSTRACT

Breast cancer incidence in men is statistically rare; however, given the lack of screening in males, more advanced stages at initial diagnosis result in lower 5-year survival rates for men with breast cancer compared to women. A sexual dimorphism, with respect to the effect of tumor growth on cachexia incidence and severity, has also been reported across cancer types. The purpose of this study was to examine the sexual dimorphism of breast cancer as it pertains to skeletal muscle function and molecular composition. Using female and male transgenic PyMT mice, we tested the hypothesis that the isometric contractile properties and molecular composition of skeletal muscle would be differentially affected by breast tumors. PyMT tumor-bearing mice of each sex, corresponding to maximal tumor burden, were compared to their respective controls. RNA sequencing of skeletal muscle revealed different pathway alterations that were exclusive to each sex. Further, differentially expressed genes and pathways were substantially more abundant in female tumor mice, with only minimal dysregulation in male tumor mice, each compared to their respective controls. These differences in the transcriptome were mirrored in isometric contractile properties, with greater tumor-induced dysfunction in females than male mice, as well as muscle wasting. Collectively, these data support the concept of sexually dimorphic responses to cancer in skeletal muscle and suggest that these responses may be associated with the clinical differences in breast cancer between the sexes. The identified sex-dependent pathways within the muscle of male and female mice provide a framework to evaluate therapeutic strategies targeting tumor-associated skeletal muscle alterations.


Subject(s)
Neoplasms , Sex Characteristics , Female , Male , Mice , Animals , Muscle, Skeletal/metabolism , Cachexia/metabolism , Neoplasms/metabolism , Mice, Transgenic , Disease Models, Animal
3.
Anal Chem ; 95(2): 946-954, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36537829

ABSTRACT

Hypoxia, acidosis, and elevated inorganic phosphate concentration are characteristics of the tumor microenvironment in solid tumors. There are a number of methods for measuring each parameter individually in vivo, but the only method to date for noninvasive measurement of all three variables simultaneously in vivo is electron paramagnetic spectroscopy paired with a monophosphonated trityl radical, pTAM/HOPE. While HOPE has been successfully used for in vivo studies upon intratissue injection, it cannot be delivered intravenously due to systemic toxicity and albumin binding, which causes significant signal loss. Therefore, we present HOPE71, a monophosphonated trityl radical derived from the very biocompatible trityl probe, Ox071. Here, we describe a straightforward synthesis of HOPE71 starting with Ox071 and report its EPR sensitivities to pO2, pH, and [Pi] with X-band and L-band EPR spectroscopy. We also confirm that HOPE71 lacks albumin binding, shows low cytotoxicity, and has systemic tolerance. Finally, we demonstrate its ability to profile the tumor microenvironment in vivo in a mouse model of breast cancer.


Subject(s)
Electron Spin Resonance Spectroscopy , Neoplasms , Oxygen , Trityl Compounds , Animals , Mice , Electron Spin Resonance Spectroscopy/methods , Hydrogen-Ion Concentration , Hypoxia , Oxygen/chemistry , Tumor Microenvironment , Trityl Compounds/chemistry , Biosensing Techniques
4.
Analyst ; 147(24): 5643-5648, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36373434

ABSTRACT

We describe the synthesis, characterization, and application of an isotopologue of the trityl radical OX071, labeled with 13C at the central carbon (13C1). This spin probe features large anisotropy of the hyperfine coupling with the 13C1 (I = 1/2), leading to an EPR spectrum highly sensitive to molecular tumbling. The high biocompatibility and lack of interaction with blood albumin allow for systemic delivery and in vivo measurement of tissue microviscosity by EPR.


Subject(s)
Trityl Compounds , Electron Spin Resonance Spectroscopy
5.
RSC Adv ; 11(42): 25951-25954, 2021.
Article in English | MEDLINE | ID: mdl-34354828

ABSTRACT

Low-field electron paramagnetic resonance spectroscopy paired with pTAM, a mono-phosphonated triarylmethyl radical, is an unmatched technique for concurrent and non-invasive measurement of oxygen concentration, pH, and inorganic phosphate concentration for in vivo investigations. However, the prior reported synthesis is limited by its low yield and poor scalability, making wide-spread application of pTAM unfeasible. Here, we report a new strategy for the synthesis of pTAM with significantly greater yields demonstrated on a large scale. We also present a standalone application with user-friendly interface for automatic spectrum fitting and extraction of pO2, pH, and [Pi] values. Finally, we confirm that pTAM remains in the extracellular space and has low cytotoxicity appropriate for local injection.

6.
J Magn Reson ; 305: 94-103, 2019 08.
Article in English | MEDLINE | ID: mdl-31238278

ABSTRACT

An electron paramagnetic resonance (EPR) imaging system has been custom built for use in pre-clinical and, potentially, clinical studies. Commercial standalone modules have been used in the design that are MATLAB-controlled. The imaging system combines digital and analog technologies. It was designed to achieve maximum flexibility and versatility and to perform standard and novel user-defined experiments. This design goal is achieved by frequency mixing of an arbitrary waveform generator (AWG) output at the intermediate frequency (IF) with a constant source frequency (SF). Low noise SF at 250, 750, and 1000 MHz are available in the system. A wide range of frequencies from near-baseband to L-band can be generated as a result. Two-stage downconversion at the signal detection side is implemented that enables multi-frequency EPR capability. In the first stage, the signal frequency is converted to IF. A novel AWG-enabled digital auto-frequency control method that operates at IF is described that is used for automatic resonator tuning. Quadrature baseband EPR signal is generated in the second downconversion step. The semi-digital approach of mixing low-noise frequency sources with an AWG permits generation of arbitrary excitation patterns that include but are not limited to frequency sweeps for resonator tuning and matching, continuous-wave, and pulse sequences. Presented in this paper is the demonstration of rapid scan (RS) EPR imaging implemented at 800 MHz. Generation of stable magnetic scan waveforms is critical for the RS method. A digital automatic scan control (DASC) system was developed for sinusoidal magnetic field scans. DASC permits tight control of both amplitude and phase of the scans. A surface loop resonator was developed using 3D printing technology. RS EPR imaging system was validated using sample phantoms. In vivo imaging of a breast cancer mouse model is demonstrated.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Mammary Neoplasms, Experimental/diagnostic imaging , Algorithms , Animals , Equipment Design , Image Processing, Computer-Assisted , Mice , Phantoms, Imaging , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...