Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(26): 48103-48111, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558724

ABSTRACT

A simple configuration of only λ/9 thick 2D metallic grating embedded within an electro-optic (EO) material (lithium niobate for instance) is proposed and theoretically studied to act as an EO modulator. On the one hand, this grating is used as an interdigitated comb to apply a very high and spatially periodic modification of the electrostatic field. On the other hand, the grating is designed to exhibit a Fano-like resonance in the NIR spectral range. This resonance is used to confine the electromagnetic field inside the EO material leading to an intrinsic enhancement of the EO effect. Extensive numerical simulations are performed to optimize the geometry in agreement with technological fabrication constraints. We achieved a local field factor of 24.5 leading to a local index modification Δn as large as 1 for 1 V applied voltage. This allows a modulation sensitivity of 14.35 nm/V (2000 times larger than state of the art) together with a resonance depth of 60% and a driving voltage of only 75 mV opening the way to the fabrication of ultra-thin low driving voltage EO devices.

2.
Opt Lett ; 45(7): 2103-2106, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236079

ABSTRACT

This Letter is devoted to pointing out a specific feature of the finite-difference-time-domain (FDTD) method through the study of nano-structures supporting geometrical symmetry-protected modes that cannot be excited at certain conditions of illumination. The spatial discretization performed in the FDTD algorithm naturally leads to breaking this symmetry and allows the excitation of these modes. The quality factors of the corresponding resonances are then directly linked to the degree of symmetry breaking, i.e., the spatial grid dimension, even though the convergence criteria of the FDTD are fulfilled. This finding shows that the FDTD must be handled with great care and, more importantly, that very huge quality-factor resonances can be achieved at the cost of nanometer-scale mastered fabrication processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...