Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson ; 335: 107139, 2022 02.
Article in English | MEDLINE | ID: mdl-34974207

ABSTRACT

The low sensitivity of NMR spectroscopy is of historical concern in the field, and various approaches have been developed to mitigate this limitation. On the shoulder of giants, today one can routinely implement, for example, the pulse/Fourier transform NMR with the cross polarization together with the ultra-low temperature MAS DNP under high-field conditions. We show in this work this current opportunity should further be augmented by combining them with the cryogenic signal amplification. Our presented MAS DNP probe operates with the closed-cycle helium MAS system, and cools the internal preamplifier-duplexer module with the "return" helium gas on its way back to the compressor in the loop. The signal-to-noise (S/N) gain relative to the room-temperature measurements of a factor of 4.6 and 2.4 was found for the measurement using the cold- and room-temperature preamplifier, respectively, at the sample temperature of T = 20 K at B0 = 16.4 T. The ratio of these factors reveals âˆ¼ two-fold sensitivity improvement that results purely from the introduction of the cold signal amplification, i.e., noise reduction. Together with the increase of the thermal Boltzmann polarization at low temperatures, the combined S/N gain of max. ∼70-fold is possible without DNP. The DNP enhancement factor of ∼40 as we found in this work for a microcrystalline MLF sample may be multiplied to this gain. We also demonstrated the sensitivity improvement with a 13C-detected 2D NCaCx spectrum, illustrating the generality of the S/N gain from combining DNP with the cold signal amplification.


Subject(s)
Cold Temperature , Helium , Helium/chemistry , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Temperature
2.
Rev Sci Instrum ; 81(5): 054302, 2010 May.
Article in English | MEDLINE | ID: mdl-20515157

ABSTRACT

(33)S nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the (33)S nucleus. We have developed a 10 mm (33)S cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The (33)S NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The (33)S cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO(4)(2-) anions and -SO(3)(-) groups using the (33)S cryogenic probe, as the (33)S nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the (33)S cryogenic probe, as the (33)S nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.


Subject(s)
Freezing , Magnetic Resonance Spectroscopy/instrumentation , Specimen Handling/instrumentation , Sulfur Radioisotopes/analysis , Transducers , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
3.
Rev Sci Instrum ; 80(3): 036106, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19334961

ABSTRACT

With the goal of a (33)S nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the (33)S NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 microM taurine solutions, which is the level of sensitivity necessary for biological samples.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Taurine/analysis , Transducers , Cold Temperature , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Sulfur Isotopes/analysis , Sulfur Isotopes/chemistry
4.
J Magn Reson ; 192(2): 329-37, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18424127

ABSTRACT

We have commenced a project to develop a beyond-1 GHz solution NMR spectrometer using a HTS coil. Due to a small residual resistance present in the HTS conductor and joint resistance between conductors, a stable persistent current sufficient for NMR measurements is unlikely. Therefore, a current has to be supplied to the HTS coil from an external power supply. The ripple of an external power supply causes a field fluctuation which must be stabilized. In this study we show results of NMR measurements using a 500-600 MHz NMR in such an external current mode: the field fluctuations are stabilized by an internal 2H lock. The field fluctuation from the external power supply comprises a major field fluctuation component at low frequencies, 0.003-0.005 Hz, and superimposed minor field ripples at 2 Hz and 50 Hz. The former limits the time interval of the internal 2H lock, while the latter generates sidebands in the NMR spectrum. Sideband and baseline noise are controlled by appropriate selection of the feedback loop parameters of the lock. The quality of the 1D-solution NMR spectra observed in external current mode is equivalent to that obtained in persistent current mode. However, if the feedback loop time is as short as the gradient pulse width, refocusing of the NMR signal is lost and NMR peaks disappear. The 2D-NOESY and the 2D-HSQC spectra of ubiquitin in an external current mode have been acquired. The quality of the 2D spectra is equivalent to those obtained in persistent current mode; i.e. the internal 2H lock operates stably over an experimental time interval of 40-50 min. To realize a beyond-1 GHz NMR spectrometer, further investigations must be made of (i) the long term stability of a DC power supply, (ii) the enhancement of the compensation field limit for the internal 2H lock, (iii) the extension of the helium refill time interval, and (iv) a method to correct the field homogeneity in the external current mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...