Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4871, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871738

ABSTRACT

The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies.


Subject(s)
Chromosomal Instability , ErbB Receptors , Lung Neoplasms , Mutation , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Mice , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Molecular Targeted Therapy/methods , Female , DNA Copy Number Variations , Male
2.
Cancer Discov ; 11(10): 2456-2473, 2021 10.
Article in English | MEDLINE | ID: mdl-33947663

ABSTRACT

APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.


Subject(s)
APOBEC Deaminases/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Animals , Cell Line, Tumor , Chromosomal Instability , DNA Replication , Female , Humans , Mice
3.
Nat Commun ; 11(1): 1792, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286289

ABSTRACT

Continuous cancer growth is driven by subsets of self-renewing malignant cells. Targeting of uncontrolled self-renewal through inhibition of stem cell-related signaling pathways has proven challenging. Here, we show that cancer cells can be selectively deprived of self-renewal ability by interfering with their epigenetic state. Re-expression of histone H1.0, a tumor-suppressive factor that inhibits cancer cell self-renewal in many cancer types, can be broadly induced by the clinically well-tolerated compound Quisinostat. Through H1.0, Quisinostat inhibits cancer cell self-renewal and halts tumor maintenance without affecting normal stem cell function. Quisinostat also hinders expansion of cells surviving targeted therapy, independently of the cancer types and the resistance mechanism, and inhibits disease relapse in mouse models of lung cancer. Our results identify H1.0 as a major mediator of Quisinostat's antitumor effect and suggest that sequential administration of targeted therapy and Quisinostat may be a broadly applicable strategy to induce a prolonged response in patients.


Subject(s)
Cell Self Renewal , Histones/metabolism , Hydroxamic Acids/pharmacology , Neoplasms/metabolism , Neoplasms/pathology , Animals , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Neoplasms/genetics , Recurrence
4.
Cell Rep ; 30(2): 481-496.e6, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31940491

ABSTRACT

Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance.


Subject(s)
Myeloid Cells/metabolism , T-Lymphocytes, Regulatory/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Mice
5.
Cell ; 173(3): 595-610.e11, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29656894

ABSTRACT

The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Alleles , Biomarkers, Tumor , Chromosomes , Clonal Evolution , Disease Progression , Evolution, Molecular , Female , Genetic Heterogeneity , Genetic Variation , Humans , Longitudinal Studies , Male , Middle Aged , Models, Statistical , Mutation , Neoplasm Metastasis , Phenotype , Phylogeny , Prognosis , Prospective Studies , Sequence Analysis, DNA
6.
Cancer Cell ; 31(1): 79-93, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28073006

ABSTRACT

Chromosomal instability (CIN) contributes to cancer evolution, intratumor heterogeneity, and drug resistance. CIN is driven by chromosome segregation errors and a tolerance phenotype that permits the propagation of aneuploid genomes. Through genomic analysis of colorectal cancers and cell lines, we find frequent loss of heterozygosity and mutations in BCL9L in aneuploid tumors. BCL9L deficiency promoted tolerance of chromosome missegregation events, propagation of aneuploidy, and genetic heterogeneity in xenograft models likely through modulation of Wnt signaling. We find that BCL9L dysfunction contributes to aneuploidy tolerance in both TP53-WT and mutant cells by reducing basal caspase-2 levels and preventing cleavage of MDM2 and BID. Efforts to exploit aneuploidy tolerance mechanisms and the BCL9L/caspase-2/BID axis may limit cancer diversity and evolution.


Subject(s)
Aneuploidy , Caspase 2/physiology , Colorectal Neoplasms/genetics , Cysteine Endopeptidases/physiology , DNA-Binding Proteins/physiology , Transcription Factors/physiology , Aged , Aged, 80 and over , Animals , BH3 Interacting Domain Death Agonist Protein/physiology , Caspase 2/analysis , Chromosome Segregation , Cysteine Endopeptidases/analysis , DNA-Binding Proteins/genetics , HCT116 Cells , Humans , Mice , Middle Aged , Mutation , Proto-Oncogene Proteins c-mdm2/physiology , Transcription Factors/genetics , Tumor Suppressor Protein p53/physiology
8.
Nat Med ; 21(7): 795-801, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26030179

ABSTRACT

Colorectal cancers (CRCs) evolve by a reiterative process of genetic diversification and clonal evolution. The molecular profile of CRC is routinely assessed in surgical or bioptic samples. Genotyping of CRC tissue has inherent limitations; a tissue sample represents a single snapshot in time, and it is subjected to spatial selection bias owing to tumor heterogeneity. Repeated tissue samples are difficult to obtain and cannot be used for dynamic monitoring of disease progression and response to therapy. We exploited circulating tumor DNA (ctDNA) to genotype colorectal tumors and track clonal evolution during treatment with the epidermal growth factor receptor (EGFR)-specific antibodies cetuximab or panitumumab. We identified alterations in ctDNA of patients with primary or acquired resistance to EGFR blockade in the following genes: KRAS, NRAS, MET, ERBB2, FLT3, EGFR and MAP2K1. Mutated KRAS clones, which emerge in blood during EGFR blockade, decline upon withdrawal of EGFR-specific antibodies, indicating that clonal evolution continues beyond clinical progression. Pharmacogenomic analysis of CRC cells that had acquired resistance to cetuximab reveals that upon antibody withdrawal KRAS clones decay, whereas the population regains drug sensitivity. ctDNA profiles of individuals who benefit from multiple challenges with anti-EGFR antibodies exhibit pulsatile levels of mutant KRAS. These results indicate that the CRC genome adapts dynamically to intermittent drug schedules and provide a molecular explanation for the efficacy of rechallenge therapies based on EGFR blockade.


Subject(s)
Clonal Evolution , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Alleles , Antibodies/pharmacology , Antibodies/therapeutic use , Antibodies, Neoplasm/blood , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Clone Cells , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , DNA, Neoplasm/blood , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Mutation/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , ras Proteins/genetics
9.
Clin Cancer Res ; 21(9): 2157-66, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25623215

ABSTRACT

PURPOSE: Patients with colorectal cancer who respond to the anti-EGFR antibody cetuximab often develop resistance within several months of initiating therapy. To design new lines of treatment, the molecular landscape of resistant tumors must be ascertained. We investigated the role of mutations in the EGFR signaling axis on the acquisition of resistance to cetuximab in patients and cellular models. EXPERIMENTAL DESIGN: Tissue samples were obtained from 37 patients with colorectal cancer who became refractory to cetuximab. Colorectal cancer cells sensitive to cetuximab were treated until resistant derivatives emerged. Mutational profiling of biopsies and cell lines was performed. Structural modeling and functional analyses were performed to causally associate the alleles to resistance. RESULTS: The genetic profile of tumor specimens obtained after cetuximab treatment revealed the emergence of a complex pattern of mutations in EGFR, KRAS, NRAS, BRAF, and PIK3CA genes, including two novel EGFR ectodomain mutations (R451C and K467T). Mutational profiling of cetuximab-resistant cells recapitulated the molecular landscape observed in clinical samples and revealed three additional EGFR alleles: S464L, G465R, and I491M. Structurally, these mutations are located in the cetuximab-binding region, except for the R451C mutant. Functionally, EGFR ectodomain mutations prevent binding to cetuximab but a subset is permissive for interaction with panitumumab. CONCLUSIONS: Colorectal tumors evade EGFR blockade by constitutive activation of downstream signaling effectors and through mutations affecting receptor-antibody binding. Both mechanisms of resistance may occur concomitantly. Our data have implications for designing additional lines of therapy for patients with colorectal cancer who relapse upon treatment with anti-EGFR antibodies.


Subject(s)
Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Genes, erbB-1/genetics , Mutation , Antineoplastic Agents/therapeutic use , Blotting, Western , Cell Line, Tumor , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , DNA Mutational Analysis , Extracellular Space/genetics , Flow Cytometry , Humans , Real-Time Polymerase Chain Reaction
10.
Clin Cancer Res ; 20(24): 6429-38, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-24916700

ABSTRACT

PURPOSE: Targeted inhibition of EGFR with the mAbs cetuximab or panitumumab is a valuable treatment for RAS wild-type colorectal cancers. The efficacy of EGFR blockade is limited by the emergence of acquired resistance often attributed to secondary KRAS mutations. Remarkably, tumor biopsies from resistant patients show that only a fraction of the resilient cells carry KRAS mutations. We hypothesized that a paracrine cross-talk driven by the resistant subpopulation may provide in trans protection of surrounding sensitive cells. EXPERIMENTAL DESIGN: Conditioned medium assays and three-dimensional cocultures were used to assess paracrine networks between cetuximab-sensitive and -resistant cells. Production of EGFR ligands by cells sensitive to cetuximab and panitumumab was measured. The ability of recombinant EGFR ligands to protect sensitive cells from cetuximab was assessed. Biochemical activation of the EGFR signaling pathway was measured by Western blotting. RESULTS: Colorectal cancer cells sensitive to EGFR blockade can successfully grow despite cetuximab treatment when in the company of their resistant derivatives. Media conditioned by resistant cells protect sensitive parental cells from cetuximab. EGFR blockade triggers increased secretion of TGFα and amphiregulin. Increased secretion of ligands by resistant cells can sustain EGFR/ERK signaling in sensitive cells. CONCLUSIONS: Colorectal cancer cells that develop resistance to cetuximab and panitumumab secrete TGFα and amphiregulin, which protect the surrounding cells from EGFR blockade. This paracrine protective mechanism might be therapeutically exploitable.


Subject(s)
Amphiregulin/metabolism , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Paracrine Communication , Transforming Growth Factor alpha/metabolism , Amphiregulin/pharmacology , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cetuximab , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Culture Media, Conditioned/pharmacology , Genes, ras , Humans , MAP Kinase Signaling System/drug effects , Mutation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Transforming Growth Factor alpha/pharmacology
11.
Cell Rep ; 7(1): 86-93, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24685132

ABSTRACT

There are no effective therapies for the ~30% of human malignancies with mutant RAS oncogenes. Using a kinome-centered synthetic lethality screen, we find that suppression of the ERBB3 receptor tyrosine kinase sensitizes KRAS mutant lung and colon cancer cells to MEK inhibitors. We show that MEK inhibition results in MYC-dependent transcriptional upregulation of ERBB3, which is responsible for intrinsic drug resistance. Drugs targeting both EGFR and ERBB2, each capable of forming heterodimers with ERBB3, can reverse unresponsiveness to MEK inhibition by decreasing inhibitory phosphorylation of the proapoptotic proteins BAD and BIM. Moreover, ERBB3 protein level is a biomarker of response to combinatorial treatment. These data suggest a combination strategy for treating KRAS mutant colon and lung cancers and a way to identify the tumors that are most likely to benefit from such combinatorial treatment.


Subject(s)
Colonic Neoplasms/enzymology , Lung Neoplasms/enzymology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Receptor, ErbB-3/biosynthesis , ras Proteins/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Nude , Mutation , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins p21(ras) , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Xenograft Model Antitumor Assays , ras Proteins/metabolism
12.
Nature ; 508(7494): 118-22, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24670642

ABSTRACT

Treatment of BRAF(V600E) mutant melanoma by small molecule drugs that target the BRAF or MEK kinases can be effective, but resistance develops invariably. In contrast, colon cancers that harbour the same BRAF(V600E) mutation are intrinsically resistant to BRAF inhibitors, due to feedback activation of the epidermal growth factor receptor (EGFR). Here we show that 6 out of 16 melanoma tumours analysed acquired EGFR expression after the development of resistance to BRAF or MEK inhibitors. Using a chromatin-regulator-focused short hairpin RNA (shRNA) library, we find that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes activation of TGF-ß signalling, thus leading to upregulation of EGFR and platelet-derived growth factor receptor-ß (PDGFRB), which confer resistance to BRAF and MEK inhibitors. Expression of EGFR in melanoma or treatment with TGF-ß results in a slow-growth phenotype with cells displaying hallmarks of oncogene-induced senescence. However, EGFR expression or exposure to TGF-ß becomes beneficial for proliferation in the presence of BRAF or MEK inhibitors. In a heterogeneous population of melanoma cells having varying levels of SOX10 suppression, cells with low SOX10 and consequently high EGFR expression are rapidly enriched in the presence of drug, but this is reversed when the drug treatment is discontinued. We find evidence for SOX10 loss and/or activation of TGF-ß signalling in 4 of the 6 EGFR-positive drug-resistant melanoma patient samples. Our findings provide a rationale for why some BRAF or MEK inhibitor-resistant melanoma patients may regain sensitivity to these drugs after a 'drug holiday' and identify patients with EGFR-positive melanoma as a group that may benefit from re-treatment after a drug holiday.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Melanoma/drug therapy , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Animals , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/biosynthesis , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Gene Library , Humans , Indoles/administration & dosage , Indoles/pharmacology , Melanoma/enzymology , Melanoma/genetics , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , RNA, Small Interfering , Receptor Protein-Tyrosine Kinases/biosynthesis , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Platelet-Derived Growth Factor beta/biosynthesis , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , SOXE Transcription Factors/deficiency , SOXE Transcription Factors/genetics , Signal Transduction/drug effects , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Vemurafenib
13.
Sci Transl Med ; 6(224): 224ra26, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24553387

ABSTRACT

Colorectal cancers (CRCs) that are sensitive to the anti-epidermal growth factor receptor (EGFR) antibodies cetuximab or panitumumab almost always develop resistance within several months of initiating therapy. We report the emergence of polyclonal KRAS, NRAS, and BRAF mutations in CRC cells with acquired resistance to EGFR blockade. Regardless of the genetic alterations, resistant cells consistently displayed mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) activation, which persisted after EGFR blockade. Inhibition of MEK1/2 alone failed to impair the growth of resistant cells in vitro and in vivo. An RNA interference screen demonstrated that suppression of EGFR, together with silencing of MEK1/2, was required to hamper the proliferation of resistant cells. Indeed, concomitant pharmacological blockade of MEK and EGFR induced prolonged ERK inhibition and severely impaired the growth of resistant tumor cells. Heterogeneous and concomitant mutations in KRAS and NRAS were also detected in plasma samples from patients who developed resistance to anti-EGFR antibodies. A mouse xenotransplant from a CRC patient who responded and subsequently relapsed upon EGFR therapy showed exquisite sensitivity to combinatorial treatment with MEK and EGFR inhibitors. Collectively, these results identify genetically distinct mechanisms that mediate secondary resistance to anti-EGFR therapies, all of which reactivate ERK signaling. These observations provide a rational strategy to overcome the multifaceted clonal heterogeneity that emerges when tumors are treated with targeted agents. We propose that MEK inhibitors, in combination with cetuximab or panitumumab, should be tested in CRC patients who become refractory to anti-EGFR therapies.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , MAP Kinase Kinase Kinases/antagonists & inhibitors , Drug Resistance, Neoplasm , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Silencing , Humans , MAP Kinase Kinase Kinases/genetics , Signal Transduction
14.
Cancer Discov ; 3(6): 658-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23729478

ABSTRACT

EGF receptor (EGFR)-targeted monoclonal antibodies are effective in a subset of metastatic colorectal cancers. Inevitably, all patients develop resistance, which occurs through emergence of KRAS mutations in approximately 50% of the cases. We show that amplification of the MET proto-oncogene is associated with acquired resistance in tumors that do not develop KRAS mutations during anti-EGFR therapy. Amplification of the MET locus was present in circulating tumor DNA before relapse was clinically evident. Functional studies show that MET activation confers resistance to anti-EGFR therapy both in vitro and in vivo. Notably, in patient-derived colorectal cancer xenografts, MET amplification correlated with resistance to EGFR blockade, which could be overcome by MET kinase inhibitors. These results highlight the role of MET in mediating primary and secondary resistance to anti-EGFR therapies in colorectal cancer and encourage the use of MET inhibitors in patients displaying resistance as a result of MET amplification.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , Proto-Oncogene Proteins c-met/pharmacology , Animals , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents/adverse effects , Cetuximab , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Genes, ras , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Panitumumab , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Random Allocation , Xenograft Model Antitumor Assays
15.
Int J Cancer ; 133(5): 1259-65, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23404247

ABSTRACT

KRAS mutations are the most common oncogenic event in colorectal cancer (CRC) progression and their occurrence is associated with lack of response to anti epidermal growth factor receptor (EGFR) targeted therapies. Using preclinical models and patients' samples we recently reported that the emergence of KRAS mutations but also KRAS amplification is associated with acquired resistance to the EGFR inhibitors cetuximab or panitumumab. We reasoned that KRAS amplification may also be responsible for primary resistance to these agents. Furthermore, while the prevalence of KRAS mutations has been well established in CRC, little is known about the frequency of KRAS amplification in large CRC series. We performed a screening of 1,039 CRC samples to assess the prevalence of KRAS amplification in this tumor type and further evaluated the role of this genetic alteration on the sensitivity to anti EGFR therapies. We detected KRAS amplification in 7/1,039 (0.67%) and 1/102 evaluable CRC specimens and cell lines, respectively. KRAS amplification was mutually exclusive with KRAS mutations. Tumors or cell lines harboring this genetic lesion are not responsive to anti-EGFR inhibitors. Although KRAS amplification is an infrequent event in CRC, it might be responsible for precluding response to anti-EGFR treatment in a small proportion of patients.


Subject(s)
Colorectal Neoplasms/genetics , ErbB Receptors/antagonists & inhibitors , Gene Amplification , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Humans , Proto-Oncogene Proteins p21(ras) , Retrospective Studies
16.
Nature ; 486(7404): 532-6, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22722830

ABSTRACT

A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.


Subject(s)
Antibodies, Monoclonal/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , Mutation/genetics , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Alleles , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Cell Line, Tumor , Cetuximab , Colorectal Neoplasms/pathology , Disease Progression , Drug Resistance, Neoplasm/genetics , Genes, ras/genetics , Humans , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Panitumumab , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins p21(ras)
SELECTION OF CITATIONS
SEARCH DETAIL
...