Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1132555, 2023.
Article in English | MEDLINE | ID: mdl-37457343

ABSTRACT

Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.

2.
Biol Trace Elem Res ; 200(4): 1902-1916, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34050455

ABSTRACT

Intensive production of fruits and vegetables causes heavy metal accumulation. Consumption of this kind of foodstuff is a growing concern of the modern world with the additional distress of the supply of enough foodstuffs. To contribute to this global purpose, this research aimed to find out the mineral nutrient and heavy metal concentrations of commonly consumed fruity vegetables in Kyrgyzstan. Totally, ten different fruity type vegetables were collected from five different large bazaars of Kyrgyzstan. From these, 20 samples, including washed/unwashed rinds of vegetables, were quantified in terms of their B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn contents by using inductively coupled plasma-optical emission spectrometry (ICP-OES). The concentrations of the fruity vegetables were found in the following range: B (1.392-25.816), Ca (92.814-4095.466), Cd (0.007-0.086), Cr (0.009-0.919), Cu (0.351-8.351), Fe (4.429-126.873), K (920.124-10,135.995), Mg (61.973-879.085), Mn (1.113-78.938), Na (36.132-266.475), Ni (0.039-1.215), Pb (0.081-2.906), and Zn (1.653-87.107) (mg kg-1). It was determined that red capia pepper was the vegetable having the highest daily nutritional value according to evaluation done in our study. Taking into account of the HI values, all of the vegetables analyzed were determined to be lower than the limit value of 1 that falls into acceptable limits in terms of being safe. Peppers demonstrated the highest variation in terms of the elemental content. The high Cr content rendered hot pepper risky for consumption by both genders regarding with CR, and in terms of CR, it has been observed that nickel contents being found in vegetables including tomatoes pose a moderate risk for consumption. Quite lower risk was detected in red/Brandy-wine tomatoes, eggplants, and cucumber for both genders. As most striking result in our study, the Brandy-wine type tomato was found to be healthiest (as well as safest) and nutritious vegetable looking from the viewpoint of consumption in Kyrgyzstan.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Monitoring , Fruit/chemistry , Kyrgyzstan , Metals, Heavy/analysis , Minerals/analysis , Multidimensional Scaling Analysis , Nutrients , Risk Assessment , Soil Pollutants/analysis , Vegetables/chemistry
3.
Int J Phytoremediation ; 23(12): 1255-1269, 2021.
Article in English | MEDLINE | ID: mdl-33662215

ABSTRACT

In this study, to determine whether having potential to be used as hyperaccumulator for Cd and Ni, numerous experiments were designed for conducting assessments for physiological and genotoxic changes along with defining possible alterations on mineral nutrient status of Lemna minor L. by applying Cd-Ni binary treatments (0, 100, 200 and 400 µM). Our study revealed that there were increases in the concentrations of B, Cr, Fe, K, Mg, and Mn whereas decreases were noticed in the concentrations of Na and Zn and the levels of Ca were inversely proportional to Cd-Ni applications showing tendency to increase at the low concentration and to decrease at the high concentration. Randomly Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) analyses revealed that rather than band losses and new band formations, mostly intensity changes in the band profiles, and low polymorphism and high genomic template stability (GTS) were observed. Although, to date, L. minor was defined as an efficient hyperaccumulator/potential accumulator or competent phytoremedial agent by researchers. Our research revealed that L. minor showing high accumulation capability for Cd and having low polymorphism rate and high genomic template stability is a versatile hyperaccumulator, especially for Cd; therefore, highly recommended by us for decontamination of water polluted with Cd. NOVELTY STATEMENTMany studies have been focused on the effects of individual metal ions. However, heavy metal contaminants usually exist as their mixtures in natural aquatic environments. Especially, Cd and Ni coexist in industrial wastes.In this study, the accumulation properties of Lemna minor for both Cd and Ni were investigated and the effects of Cd and Ni on the bioaccumulation of B, Ca, Cu, Fe, Mg, K, Mn, Na, Pb and Zn in L. minor were also determined. This study furthermore aimed to assess the genotoxic effects of Cd and Ni found in being extended concentrations on DNA using the Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) method.


Subject(s)
Araceae , Metals, Heavy , Araceae/genetics , Biodegradation, Environmental , Cadmium , Environmental Monitoring , Genomics , Metals, Heavy/analysis , Random Amplified Polymorphic DNA Technique
4.
Biol Trace Elem Res ; 199(3): 1123-1144, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32557099

ABSTRACT

Leafy vegetables are important components of the human diet for providing mineral nutrients. However, due to the tendency of metal accumulation, metal contents of leafy vegetables need not only to be determined but also estimated health risk for revealing possible health effects on humans. The aims of this study are (I) to examine comprehensive concentrations of trace/heavy metals along with some macroelements including Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn in selected leafy vegetables from Kyrgyzstan; (II) to assess recommended dietary allowances (RDA); and (III) to evaluate hazard quotient (HQ) and carcinogenic risk estimation with associated vegetable consumption. For this purpose, B, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn elements were quantified, utilizing an ICP-OES instrument, in 18 samples belonging to 12 different groups of leafy vegetables including celery, Chinese parsley, dill, garden sorrel, lettuce, parsley, purple basil, spinach, and white-red-napa cabbage collected from different bazaars of Kyrgyzstan. Average elemental contents of the analyzed vegetables were determined (in mg kg-1) as follows: B (3.21-64.79), Ca (852.51-17,183.20), Cd (0.015-0.09), Cu (6.08-63.47), Fe (116.52-768.66), K (2347.04-17,305.42), Mg (136.34-1261.11), Na (54.75-526.42), Ni (0.09-1.3), Pb (1.91-9.54), and Zn (29.49-314.93). Estimated daily intake, recommended daily allowance, hazard quotients, and carcinogenic risk values of the vegetables were calculated with the help of these results. In considering HQ values, Chinese cabbage was determined to be safe for the consumption of both genders whereas parsley to be safe for only males. Based on the carcinogenic risk calculation, most of the vegetables examined in this study were categorized as moderately risky. It was inferred from the given results that airborne pollution has impaired/increased the mineral contents of vegetables for both genders. The findings obtained from this study were compared with international standards and will contribute to the data available on a global scale.


Subject(s)
Metals, Heavy , Soil Pollutants , Trace Elements , Environmental Monitoring , Female , Humans , Kyrgyzstan , Male , Metals, Heavy/analysis , Minerals , Risk Assessment , Soil Pollutants/analysis , Trace Elements/analysis , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...