Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 9(14): 1736-50, 2007 Apr 14.
Article in English | MEDLINE | ID: mdl-17396185

ABSTRACT

Using Fourier Transform InfraRed (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), and Transmission Electron Microscopy (TEM), we characterize the structure and/or morphology of hematite (alpha-Fe(2)O(3)) particles with sizes of 7, 18, 39 and 120 nm. It is found that these nanoparticles possess maghemite (gamma-Fe(2)O(3))-like defects in the near surface regions, to which a vibrational mode at 690 cm(-1), active both in FTIR and Raman spectra, is assigned. The fraction of the maghemite-like defects and the net lattice disorder are inversely related to the particle size. However, the effect is opposite for nanoparticles grown by sintering of smaller hematite precursors under conditions when the formation of a uniform hematite-like structure throughout the aggregate is restricted by kinetic issues. This means that not only particle size but also the growth kinetics determines the structure of the nanoparticles. The observed structural changes are interpreted as size-induced alpha-Fe(2)O(3)<-->gamma-Fe(2)O(3) phase transitions. We develop a general model that considers spinel defects and absorbed/adsorbed species (in our case, hydroxyls) as dominant controls on structural changes with particle size in hematite nanoparticles, including solid-state phase transitions. These changes are represented by trajectories in a phase diagram built in three phase coordinates-concentrations of spinel defects, absorbed impurities, and adsorbed species. The critical size for the onset of the alpha-->gamma phase transition depends on the particle environment, and for the dry particles used in this study is about 40 nm. The model supports the existence of intermediate phases (protohematite and hydrohematite) during dehydration of goethite. We also demonstrate that the hematite structure is significantly less defective when the nanoparticles are immersed in water or KBr matrix, which is explained by the effects of the electrochemical double layer and increased rigidity of the particle environment. Finally, we revise the problem of applicability of IR spectroscopy to the lattice vibrations of hematite nanoparticles, demonstrating that structural comparison of different samples is much more reliable if it is based on the E(u) band at about 460 cm(-1) and the spinel band at 690 cm(-1), instead of the A(2u)/E(u) band at about 550 cm(-1) used in previous work. The new methodology is applied to analysis of the reported IR spectra of Martian hematite.


Subject(s)
Ferric Compounds/chemistry , Nanoparticles/chemistry , Microscopy, Electron, Transmission/methods , Models, Molecular , Particle Size , Phase Transition , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman , Temperature , Vibration , X-Ray Diffraction
2.
Science ; 292(5520): 1360-3, 2001 May 18.
Article in English | MEDLINE | ID: mdl-11359008

ABSTRACT

Force microscopy has been used to quantitatively measure the infinitesimal forces that characterize interactions between Shewanella oneidensis (a dissimilatory metal-reducing bacterium) and goethite (alpha-FeOOH), both commonly found in Earth near-surface environments. Force measurements with subnanonewton resolution were made in real time with living cells under aerobic and anaerobic solutions as a function of the distance, in nanometers, between a cell and the mineral surface. Energy values [in attojoules (10(-18) joules)] derived from these measurements show that the affinity between S. oneidensis and goethite rapidly increases by two to five times under anaerobic conditions in which electron transfer from bacterium to mineral is expected. Specific signatures in the force curves suggest that a 150-kilodalton putative iron reductase is mobilized within the outer membrane of S. oneidensis and specifically interacts with the goethite surface to facilitate the electron transfer process.


Subject(s)
Bacterial Adhesion , FMN Reductase , Geologic Sediments/microbiology , Iron Compounds/metabolism , Microscopy, Atomic Force , Shewanella/metabolism , Aerobiosis , Anaerobiosis , Electron Transport , Geologic Sediments/chemistry , Iron Compounds/chemistry , Minerals , NADH, NADPH Oxidoreductases/metabolism , Shewanella/enzymology , Time Factors
3.
Chem Res Toxicol ; 13(9): 913-21, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10995265

ABSTRACT

Recent studies have shown that iron is an important factor in the chemical activity of asbestos and may play a key role in its biological effects. The most carcinogenic forms of asbestos, crocidolite and amosite, contain up to 27% iron by weight as part of their crystal structure. These minerals can acquire more iron after being inhaled, thereby forming asbestos bodies. Reported here is a method for depositing iron on asbestos fibers in vitro which produced iron deposits of the same form as observed on asbestos bodies removed from human lungs. Crocidolite and amosite were incubated in either FeCl(2) or FeCl(3) solutions for 2 h. To assess the effect of longer-term binding, crocidolite was incubated in FeCl(2) or FeCl(3) and amosite in FeCl(3) for 14 days. The amount of iron bound by the fibers was determined by measuring the amount remaining in the incubation solution using an iron assay with the chelator ferrozine. After iron loading had been carried out, the fibers were also examined for the presence of an increased amount of surface iron using X-ray photoelectron spectroscopy (XPS). XPS analysis showed an increased amount of surface iron on both Fe(II)- and Fe(III)-loaded crocidolite and only on Fe(III)-loaded amosite. In addition, atomic force microscopy revealed that the topography of amosite, incubated in 1 mM FeCl(3) solutions for 2 h, was very rough compared with that of the untreated fibers, further evidence of Fe(III) accumulation on the fiber surfaces. Analysis of long-term Fe(III)-loaded crocidolite and amosite using X-ray diffraction (XRD) suggested that ferrihydrite, a poorly crystallized hydrous ferric iron oxide, had formed. XRD also showed that ferrihydrite was present in amosite-core asbestos bodies taken from human lung. Auger electron spectroscopy (AES) confirmed that Fe and O were the only constituent elements present on the surface of the asbestos bodies, although H cannot be detected by AES and is presumably also present. Taken together for all samples, the data reported here suggest that Fe(II) binding may result from ion exchange, possibly with Na, on the fiber surfaces, whereas Fe(III) binding forms ferrihydrite on the fibers under the conditions used in this study. Therefore, fibers carefully loaded with Fe(III) in vitro may be a particularly appropriate and useful model for the study of chemical characteristics associated with asbestos bodies and their potential for interactions in a biosystem.


Subject(s)
Asbestos, Amosite/metabolism , Asbestos, Crocidolite/metabolism , Asbestosis/metabolism , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Lung/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aged , Asbestos, Amosite/analysis , Asbestos, Crocidolite/analysis , Asbestosis/pathology , Chlorides , Humans , In Vitro Techniques , Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Models, Biological , Spectrometry, X-Ray Emission
4.
Geochim Cosmochim Acta ; 57(14): 3245-9, 1993 Jul.
Article in English | MEDLINE | ID: mdl-11538299

ABSTRACT

It has been suggested that the formation of reduced carbonaceous matter in basalts and mantle xenoliths occurs by heterogeneous reaction of volcanic gas on fresh, chemically active crack surfaces produced by thermal stresses during eruption and cooling. This hypothesis is supported by experiments at 400-800 degrees C on ¿010¿ surfaces of San Carlos olivine exposed to C-O-H gases generated by the decomposition of oxalic acid and oxalic acid dihydrate. Carbonaceous films form readily on these surfaces and achieve thicknesses comparable to those observed in natural samples (a few nanometers) in a matter of minutes. At relatively oxidizing conditions, the carbonaceous films consist principally of C-C and C-H bonded species with lesser amounts of C-O bonded species. At relatively reducing conditions, the carbonaceous films consist of subequal amounts of C-C/C-H, C-O, and metal-C species. Aliphatic and aromatic hydrocarbons and other thermally labile organic species are associated with carbonaceous films in some natural samples but none were detected in experimental samples from this study, leaving open the question of abiotic synthesis of organic matter on crack surfaces in basalts. Regardless, it is clear from the preliminary experiments reported here that crack surfaces in olivine (and probably other silicate minerals and glasses) are capable of stabilizing compounds that otherwise would not be stable in cooling lava.


Subject(s)
Carbon/chemistry , Hydrogen/chemistry , Iron Compounds/analysis , Magnesium Compounds/analysis , Minerals/analysis , Oxygen/chemistry , Silicates/analysis , Evolution, Chemical , Gases/chemistry , Hot Temperature , Iron Compounds/chemistry , Magnesium Compounds/chemistry , Minerals/chemistry , Oxalates/chemistry , Silicates/chemistry , Spectrophotometry/instrumentation , Spectrophotometry/methods , Thermodynamics , Volcanic Eruptions
5.
Science ; 254(5034): 983-6, 1991 Nov 15.
Article in English | MEDLINE | ID: mdl-17731519

ABSTRACT

Scanning tunneling microscopy was used to characterize the growth of oxidized areas on galena (100) surfaces and the formation of gold islands by the reductive adsorption of AuCl(4)(-) from aqueous solution. The gold islands and galena substrate were distinguished by atomic resolution imaging and tunneling spectroscopy. Oxidized areas on galena have [110]-trending boundaries; gold islands elongate along [110] directions. However, there are no obvious structural registry considerations that would lead to elongation of gold islands in a [110] direction. Instead, it is probable that a direct coupling of gold reduction and sulfide surface oxidation controls the initial formation of gold islands. Gold islands grow less quickly on preoxidized galena surfaces and show no preferred direction of growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...