Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hear Res ; 322: 14-23, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25456089

ABSTRACT

Present-day cochlear implants demonstrate remarkable speech understanding performance despite the use of non-optimized coding strategies concerning the transmission of tonal information. Most systems rely on place pitch information despite possibly large deviations from correct tonotopic placement of stimulation sites. Low frequency information is limited as well because of the constant pulse rate stimulation generally used and, being even more restrictive, of the limited insertion depth of the electrodes. This results in a compromised perception of music and tonal languages. Newly available flexible long straight electrodes permit deep insertion reaching the apical region with little or no insertion trauma. This article discusses the potential benefits of deep insertion which are obtained using pitch-locked temporal stimulation patterns. Besides the access to low frequency information, further advantages of deeply inserted long electrodes are the possibility to better approximate the correct tonotopic location of contacts, the coverage of a wider range of cochlear locations, and the somewhat reduced channel interaction due to the wider contact separation for a given number of channels. A newly developed set of strategies has been shown to improve speech understanding in noise and to enhance sound quality by providing a more "natural" impression, which especially becomes obvious when listening to music. The benefits of deep insertion should not, however, be compromised by structural damage during insertion. The small cross section and the high flexibility of the new electrodes can help to ensure less traumatic insertions as demonstrated by patients' hearing preservation rate. This article is part of a Special Issue entitled .


Subject(s)
Cochlear Implantation/instrumentation , Cochlear Implants , Persons With Hearing Impairments/rehabilitation , Speech Perception , Acoustic Stimulation , Algorithms , Comprehension , Cues , Electric Stimulation , Humans , Music , Persons With Hearing Impairments/psychology , Pitch Perception , Prosthesis Design , Signal Processing, Computer-Assisted , Speech Intelligibility
2.
Biomed Eng Online ; 5: 13, 2006 Feb 22.
Article in English | MEDLINE | ID: mdl-16504064

ABSTRACT

BACKGROUND: Experimental results are commonly fitted by determining parameter values of suitable mathematical expressions. In case a relation exists between different data sets, the accuracy of the parameters obtained can be increased by incorporating this relationship in the fitting process instead of fitting the recordings separately. METHODS: An algorithm to fit multiple measured curves simultaneously was developed. The method accounts for parameters that are shared by some curves. It can be applied to either linear or nonlinear equations. Simulated noisy "measurement results" were created to compare the introduced method to the "straight forward" way of fitting the curves separately. RESULTS: The analysis of the simulated measurements confirm, that the introduced method yields more accurate parameters compared to the ones gained by fitting the measurements separately. Therefore it needs more computer time. As an example, the new fitting algorithm is applied to the measurements of the evoked compound action potentials (ECAP) of the auditory nerve: This leads to promising ideas to reduce artefacts generated by the measuring process. CONCLUSION: The introduced fitting algorithm uses the relationship between multiple measurement results to increase the accuracy of the parameters. Its application in the field of ECAP measurements is promising and should be further investigated.


Subject(s)
Action Potentials/physiology , Algorithms , Auditory Cortex/physiology , Data Interpretation, Statistical , Diagnosis, Computer-Assisted/methods , Evoked Potentials, Auditory/physiology , Humans , Numerical Analysis, Computer-Assisted , Reproducibility of Results , Sensitivity and Specificity
3.
Ear Hear ; 23(2): 81-91, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11951852

ABSTRACT

OBJECTIVE: Objective measurements can be helpful for cochlear implant fitting of difficult populations, as for example very young children. One method, the recording of the electrically evoked compound action potential (EAP), measures the nerve recruitment in the cochlea in response to stimulation through the implant. For coding strategies implemented at a moderate stimulation rate of 250 pps per channel, useful correlations between EAP data and psychophysical data have been already found. With new systems running at higher rates, it is important to check these correlations again. DESIGN: This study investigates the correlations between psychophysical data and EAP measures calculated from EAP amplitude growth functions. EAP data were recorded in 12 Ineraid subjects. Additionally, behavioral thresholds (THR) and maximum acceptable loudness levels (MAL) were determined for stimulation rates of 80 pps and 2,020 pps for each electrode. RESULTS: Useful correlations between EAP data and psychophysical data were found at the low stimulation rate (80 pps). However, at the higher stimulation rate (2,020 pps) correlations were not significant. They were improved substantially, however, by introducing a factor that corrected for disparities due to temporal integration. Incorporation of this factor, which controls for the influence of the stimulation rate on the threshold, improved the correlations between EAP measures recorded at 80 pps and psychophysical MALs measured at 2,020 pps to better than r = 0.70. CONCLUSIONS: EAP data as such can only be used to predict behavioral THRs or MCLs at low stimulation rates. To cope with temporal integration effects at higher stimulation rates, EAP data must be rate corrected. The introduction of a threshold-rate-factor is a promising way to achieve that goal. Further investigations need to be performed.


Subject(s)
Cochlear Implants , Deafness/rehabilitation , Evoked Potentials/physiology , Psychophysics/methods , Auditory Threshold , Cochlear Nerve/physiology , Electric Stimulation/instrumentation , Equipment Design , Humans , Prosthesis Fitting
SELECTION OF CITATIONS
SEARCH DETAIL
...