Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Small ; 18(39): e2201395, 2022 09.
Article in English | MEDLINE | ID: mdl-36038355

ABSTRACT

Diamond magnetometry can provide new insights on the production of free radicals inside live cells due to its high sensitivity and spatial resolution. However, the measurements often lack intracellular context for the recorded signal. In this paper, the possible use of single-particle tracking and trajectory analysis of fluorescent nanodiamonds (FNDs) to bridge that gap is explored. It starts with simulating a set of different possible scenarios of a particle's movement, reflecting different modes of motion, degrees of confinement, as well as shapes and sizes of that confinement. Then, the insights from the analysis of the simulated trajectories are applied to describe the movement of FNDs in glycerol solutions. It is shown that the measurements are in good agreement with the previously reported findings and that trajectory analysis yields meaningful results, when FNDs are tracked in a simple environment. Then the much more complex situation of FNDs moving inside a live cell is focused. The behavior of the particles after different incubation times is analyzed, and the possible intracellular localization of FNDs is deducted from their trajectories. Finally, this approach is combined with long-term magnetometry methods to obtain maps of the spin relaxation dynamics (or T1) in live cells, as FNDs move through the cytosol.


Subject(s)
Nanodiamonds , Diamond , Fluorescent Dyes , Glycerol
2.
ACS Nano ; 14(9): 10784-10795, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32844655

ABSTRACT

The advent of microfluidics in the 1990s promised a revolution in multiple industries from healthcare to chemical processing. Deterministic lateral displacement (DLD) is a continuous-flow microfluidic particle separation method discovered in 2004 that has been applied successfully and widely to the separation of blood cells, yeast, spores, bacteria, viruses, DNA, droplets, and more. Deterministic lateral displacement is conceptually simple and can deliver consistent performance over a wide range of flow rates and particle concentrations. Despite wide use and in-depth study, DLD has not yet been fully elucidated or optimized, with different approaches to the same problem yielding varying results. We endeavor here to provide up-to-date expert opinion on the state-of-art and current fundamental, practical, and commercial challenges with DLD as well as describe experimental and modeling opportunities. Because these challenges and opportunities arise from constraints on hydrodynamics, fabrication, and operation at the micro- and nanoscale, we expect this Perspective to serve as a guide for the broader micro- and nanofluidic community to identify and to address open questions in the field.


Subject(s)
Microfluidic Analytical Techniques , Hydrodynamics , Microfluidics
3.
Micromachines (Basel) ; 11(5)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365567

ABSTRACT

In the last three decades, microfluidics and its applications have been on an exponential rise, including approaches to isolate rare cells and diagnose diseases on the single-cell level. The techniques mentioned herein have already had significant impacts in our lives, from in-the-field diagnosis of disease and parasitic infections, through home fertility tests, to uncovering the interactions between SARS-CoV-2 and their host cells. This review gives an overview of the field in general and the most notable developments of the last five years, in three parts: 1. What can we detect? 2. Which detection technologies are used in which setting? 3. How do these techniques work? Finally, this review discusses potentials, shortfalls, and an outlook on future developments, especially in respect to the funding landscape and the field-application of these chips.

4.
Nanomaterials (Basel) ; 10(3)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178407

ABSTRACT

Fluorescent nanodiamonds are frequently used as biolabels. They have also recently been established for magnetic resonance and temperature sensing at the nanoscale level. To properly use them in cell biology, we first have to understand their intracellular fate. Here, we investigated, for the first time, what happens to diamond particles during and after cell division in yeast (Saccharomyces cerevisiae) cells. More concretely, our goal was to answer the question of whether nanodiamonds remain in the mother cells or end up in the daughter cells. Yeast cells are widely used as a model organism in aging and biotechnology research, and they are particularly interesting because their asymmetric cell division leads to morphologically different mother and daughter cells. Although yeast cells have a mechanism to prevent potentially harmful substances from entering the daughter cells, we found an increased number of diamond particles in daughter cells. Additionally, we found substantial excretion of particles, which has not been reported for mammalian cells. We also investigated what types of movement diamond particles undergo in the cells. Finally, we also compared bare nanodiamonds with lipid-coated diamonds, and there were no significant differences in respect to either movement or intracellular fate.

5.
ACS Omega ; 4(25): 20972-20977, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31867488

ABSTRACT

We present a simple procedure to create smooth-sided, transparent polymer-based microfluidic devices by presegmentation with hydrophobized glass slides. We study the hypothesis that the smooth side planes permit rapid multiangle imaging of microfluidic systems in contrast to the turbid side planes that result from cutting the polymer. We compare the compatibility of the entire approach with the conventional widefield microscopy, confocal and 2-photon microscopy, as well as three-dimensional (3D) rendering and discuss limitations and potential applications.

6.
Opt Express ; 26(13): 17279-17288, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119541

ABSTRACT

With a perfectly uniform illumination, the amount and concentration of fluorophores in any (biological) sample can be read directly from fluorescence micrographs. However, non-uniform illumination in optical micrographs is a common, yet avoidable artefact, often caused by the setup of the microscope, or by inherent properties caused by the nature of the sample. In this paper, we demonstrate simple matrix-based methods using the common computing environments MATLAB and Python to correct nonuniform illumination, using either a background image or extracting illumination information directly from the sample image, together with subsequent image processing. We compare the processes, algorithms, and results obtained from both MATLAB (commercially available) and Python (freeware). Additionally, we validate our method by evaluating commonly used alternative approaches, demonstrating that the best nonuniform illumination correction can be achieved when a separate background image is available.

7.
High Throughput ; 7(2)2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29925804

ABSTRACT

In this review, we give an overview of the current state of microfluidic-based high-throughput drug assays. In this highly interdisciplinary research field, various approaches have been applied to high-throughput drug screening, including microtiter plate, droplets microfluidics as well as continuous flow, diffusion and concentration gradients-based microfluidic drug assays. Therefore, we reviewed over 100 recent publications in the field and sorted them according to their microfluidic approach. As a result, we are showcasing, comparing and discussing broadly applied approaches as well as singular promising ones that might contribute to shaping the future of this field.

8.
Pathogens ; 6(4)2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28981471

ABSTRACT

African trypanosomes are responsible for significant levels of disease in both humans and animals. The protozoan parasites are free-living flagellates, usually transmitted by arthropod vectors, including the tsetse fly. In the mammalian host they live in the bloodstream and, in the case of human-infectious species, later invade the central nervous system. Diagnosis of the disease requires the positive identification of parasites in the bloodstream. This can be particularly challenging where parasite numbers are low, as is often the case in peripheral blood. Enriching parasites from body fluids is an important part of the diagnostic pathway. As more is learned about the physicochemical properties of trypanosomes, this information can be exploited through use of different microfluidic-based approaches to isolate the parasites from blood or other fluids. Here, we discuss recent advances in the use of microfluidics to separate trypanosomes from blood and to isolate single trypanosomes for analyses including drug screening.

9.
Trends Parasitol ; 32(7): 531-541, 2016 07.
Article in English | MEDLINE | ID: mdl-27157805

ABSTRACT

Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them.


Subject(s)
Eukaryota/physiology , Parasites/physiology , Parasitology/instrumentation , Parasitology/methods , Animals , Chemotaxis , Energy Metabolism , Eukaryota/metabolism , Microfluidics , Motor Activity/physiology , Optical Tweezers , Parasites/metabolism , Parasitology/trends
10.
Lab Chip ; 15(8): 1961-8, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25756872

ABSTRACT

We present a single cell viability assay, based on chemical gradient microfluidics in combination with optical micromanipulation. Here, we used this combination to in situ monitor the effects of drugs and chemicals on the motility of the flagellated unicellular parasite Trypanosoma brucei; specifically, the local cell velocity and the mean squared displacement (MSD) of the cell trajectories. With our method, we are able to record in situ cell fixation by glutaraldehyde, and to quantify the critical concentration of 2-deoxy-d-glucose required to completely paralyze trypanosomes. In addition, we detected and quantified the impact on cell propulsion and energy generation at much lower 2-deoxy-d-glucose concentrations. Our microfluidics-based approach advances fast cell-based drug testing in a way that allows us to distinguish cytocidal from cytostatic drug effects, screen effective dosages, and investigate the impact on cell motility of drugs and chemicals. Using suramin, we could reveal the impact of the widely used drug on trypanosomes: suramin lowers trypanosome motility and induces cell-lysis after endocytosis.


Subject(s)
Drug Evaluation, Preclinical/instrumentation , Lab-On-A-Chip Devices , Single-Cell Analysis/instrumentation , Trypanosoma brucei brucei/cytology , Trypanosoma brucei brucei/drug effects , Cell Survival/drug effects , Deoxyglucose/pharmacology , Equipment Design , Glutaral/pharmacology , Microscopy , Optical Tweezers , Suramin/pharmacology , Time Factors
11.
Sci Rep ; 4: 6515, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25269514

ABSTRACT

Unicellular parasites have developed sophisticated swimming mechanisms to survive in a wide range of environments. Cell motility of African trypanosomes, parasites responsible for fatal illness in humans and animals, is crucial both in the insect vector and the mammalian host. Using millisecond-scale imaging in a microfluidics platform along with a custom made optical trap, we are able to confine single cells to study trypanosome motility. From the trapping characteristics of the cells, we determine the propulsion force generated by cells with a single flagellum as well as of dividing trypanosomes with two fully developed flagella. Estimates of the dissipative energy and the power generation of single cells obtained from the motility patterns of the trypanosomes within the optical trap indicate that specific motility characteristics, in addition to locomotion, may be required for antibody clearance. Introducing a steerable second optical trap we could further measure the force, which is generated at the flagellar tip. Differences in the cellular structure of the trypanosomes are correlated with the trapping and motility characteristics and in consequence with their propulsion force, dissipative energy and power generation.


Subject(s)
Cell Movement/physiology , Cell Tracking , Flagella/physiology , Optical Tweezers , Trypanosoma brucei brucei/physiology , Trypanosomiasis, African/parasitology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...