Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1312, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346978

ABSTRACT

Although cancer-associated fibroblast (CAF) heterogeneity is well-established, the impact of chemotherapy on CAF populations remains poorly understood. Here we address this question in high-grade serous ovarian cancer (HGSOC), in which we previously identified 4 CAF populations. While the global content in stroma increases in HGSOC after chemotherapy, the proportion of FAP+ CAF (also called CAF-S1) decreases. Still, maintenance of high residual CAF-S1 content after chemotherapy is associated with reduced CD8+ T lymphocyte density and poor patient prognosis, emphasizing the importance of CAF-S1 reduction upon treatment. Single cell analysis, spatial transcriptomics and immunohistochemistry reveal that the content in the ECM-producing ANTXR1+ CAF-S1 cluster (ECM-myCAF) is the most affected by chemotherapy. Moreover, functional assays demonstrate that ECM-myCAF isolated from HGSOC reduce CD8+ T-cell cytotoxicity through a Yes Associated Protein 1 (YAP1)-dependent mechanism. Thus, efficient inhibition after treatment of YAP1-signaling pathway in the ECM-myCAF cluster could enhance CD8+ T-cell cytotoxicity. Altogether, these data pave the way for therapy targeting YAP1 in ECM-myCAF in HGSOC.


Subject(s)
Cancer-Associated Fibroblasts , Ovarian Neoplasms , Female , Humans , Cancer-Associated Fibroblasts/metabolism , Microfilament Proteins/metabolism , Myofibroblasts/metabolism , Ovarian Neoplasms/pathology , Ovary/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Tumor Microenvironment
2.
Mol Ther Oncolytics ; 22: 355-367, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34553024

ABSTRACT

Success in solid tumor chimeric antigen receptor (CAR) T-cell therapy requires overcoming several barriers, including lung sequestration, inefficient accumulation within the tumor, and target-antigen heterogeneity. Understanding CAR T-cell kinetics can assist in the interpretation of therapy response and limitations and thereby facilitate developing successful strategies to treat solid tumors. As T-cell therapy response varies across metastatic sites, the assessment of CAR T-cell kinetics by peripheral blood analysis or a single-site tumor biopsy is inadequate for interpretation of therapy response. The use of tumor imaging alone has also proven to be insufficient to interpret response to therapy. To address these limitations, we conducted dual tumor and T-cell imaging by use of a bioluminescent reporter and positron emission tomography in clinically relevant mouse models of pleural mesothelioma and non-small cell lung cancer. We observed that the mode of delivery of T cells (systemic versus regional), T-cell activation status (presence or absence of antigen-expressing tumor), and tumor-antigen expression heterogeneity influence T-cell kinetics. The observations from our study underscore the need to identify and develop a T-cell reporter-in addition to standard parameters of tumor imaging and antitumor efficacy-that can be used for repeat imaging without compromising the efficacy of CAR T cells in vivo.

3.
Cancer Discov ; 10(9): 1330-1351, 2020 09.
Article in English | MEDLINE | ID: mdl-32434947

ABSTRACT

A subset of cancer-associated fibroblasts (FAP+/CAF-S1) mediates immunosuppression in breast cancers, but its heterogeneity and its impact on immunotherapy response remain unknown. Here, we identify 8 CAF-S1 clusters by analyzing more than 19,000 single CAF-S1 fibroblasts from breast cancer. We validate the five most abundant clusters by flow cytometry and in silico analyses in other cancer types, highlighting their relevance. Myofibroblasts from clusters 0 and 3, characterized by extracellular matrix proteins and TGFß signaling, respectively, are indicative of primary resistance to immunotherapies. Cluster 0/ecm-myCAF upregulates PD-1 and CTLA4 protein levels in regulatory T lymphocytes (Tregs), which, in turn, increases CAF-S1 cluster 3/TGFß-myCAF cellular content. Thus, our study highlights a positive feedback loop between specific CAF-S1 clusters and Tregs and uncovers their role in immunotherapy resistance. SIGNIFICANCE: Our work provides a significant advance in characterizing and understanding FAP+ CAF in cancer. We reached a high resolution at single-cell level, which enabled us to identify specific clusters associated with immunosuppression and immunotherapy resistance. Identification of cluster-specific signatures paves the way for therapeutic options in combination with immunotherapies.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
Cancer-Associated Fibroblasts/immunology , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/drug therapy , Tumor Escape , Tumor Microenvironment/immunology , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Datasets as Topic , Drug Resistance, Neoplasm/immunology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/surgery , Primary Cell Culture , RNA-Seq , Single-Cell Analysis , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
6.
Sci Rep ; 7: 41125, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28117403

ABSTRACT

Allogeneic human cardiac-derived stem/progenitor cells (hCPC) are currently under clinical investigation for cardiac repair. While cellular immune response against allogeneic hCPC could be part of their beneficial-paracrine effects, their humoral immune response remains largely unexplored. Donor-specific HLA antibodies (DSA-HLA-I/DSA-HLA-II), primary elements of antibody-mediated allograft injury, might present an unidentified risk to allogeneic hCPC therapy. Here we established that the binding strength of anti-HLA monoclonal antibodies delineates hCPC proneness to antibody-mediated injury. In vitro modeling of clinical setting demonstrated that specific DSA-HLA-I of high/intermediate binding strength are harmful for hCPC whereas DSA-HLA-II are benign. Furthermore, the Luminex-based solid-phase assays are suitable to predict the DSA-HLA risk to therapeutic hCPC. Our data indicate that screening patient sera for the presence of HLA antibodies is important to provide an immune-educated choice of allogeneic therapeutic cells, minimize the risk of precipitous elimination and promote the allogeneic reparative effects.


Subject(s)
Antibodies/analysis , HLA Antigens/immunology , Histocompatibility Testing , Stem Cell Transplantation/methods , Stem Cells/immunology , Antibodies/immunology , Humans , Immunity, Humoral , Myocardium/cytology , Myocardium/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...