Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Cell Sci ; 136(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-37994565

ABSTRACT

Matrix remodeling outcomes largely dictate patient survival post myocardial infarction. Moreover, human-restricted noncoding regulatory elements have been shown to worsen fibrosis, but their mechanism of action remains elusive. Here, we demonstrate, using induced pluripotent stem cell-derived cardiac fibroblasts (iCFs), that inflammatory ligands abundant in the remodeling heart after infarction activate AP-1 transcription factor signaling pathways resulting in fibrotic responses. This observed signaling induces deposition of fibronectin matrix and is further capable of supporting immune cell adhesion; pathway inhibition blocks iCF matrix production and cell adhesion. Polymorphisms in the noncoding regulatory elements within the 9p21 locus (also referred to as ANRIL) redirect stress programs, and in iCFs, they transcriptionally silence the AP-1 inducible transcription factor GATA5. The presence of these polymorphisms modulate iCF matrix production and assembly and reduce cell-cell signaling. These data suggest that this signaling axis is a critical modulator of cardiac disease models and might be influenced by noncoding regulatory elements.


Subject(s)
Myocardium , Transcription Factor AP-1 , Humans , Fibroblasts/metabolism , Fibrosis , Heart , Myocardium/metabolism , Signal Transduction , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
2.
Immunity ; 56(5): 959-978.e10, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37040762

ABSTRACT

Although the importance of genome organization for transcriptional regulation of cell-fate decisions and function is clear, the changes in chromatin architecture and how these impact effector and memory CD8+ T cell differentiation remain unknown. Using Hi-C, we studied how genome configuration is integrated with CD8+ T cell differentiation during infection and investigated the role of CTCF, a key chromatin remodeler, in modulating CD8+ T cell fates through CTCF knockdown approaches and perturbation of specific CTCF-binding sites. We observed subset-specific changes in chromatin organization and CTCF binding and revealed that weak-affinity CTCF binding promotes terminal differentiation of CD8+ T cells through the regulation of transcriptional programs. Further, patients with de novo CTCF mutations had reduced expression of the terminal-effector genes in peripheral blood lymphocytes. Therefore, in addition to establishing genome architecture, CTCF regulates effector CD8+ T cell heterogeneity through altering interactions that regulate the transcription factor landscape and transcriptome.


Subject(s)
Chromatin , Repressor Proteins , Humans , Binding Sites , CCCTC-Binding Factor/metabolism , CD8-Positive T-Lymphocytes/metabolism , DNA/metabolism , Protein Binding , Repressor Proteins/genetics , Repressor Proteins/metabolism
3.
Nat Aging ; 3(1): 17-33, 2023 01.
Article in English | MEDLINE | ID: mdl-36845078

ABSTRACT

As we age, structural changes contribute to progressive decline in organ function, which in the heart act through poorly characterized mechanisms. Taking advantage of the short lifespan and conserved cardiac proteome of the fruit fly, we found that cardiomyocytes exhibit progressive loss of Lamin C (mammalian Lamin A/C homologue) with age, coincident with decreasing nuclear size and increasing nuclear stiffness. Premature genetic reduction of Lamin C phenocopies aging's effects on the nucleus, and subsequently decreases heart contractility and sarcomere organization. Surprisingly, Lamin C reduction downregulates myogenic transcription factors and cytoskeletal regulators, possibly via reduced chromatin accessibility. Subsequently, we find a role for cardiac transcription factors in regulating adult heart contractility and show that maintenance of Lamin C, and cardiac transcription factor expression, prevents age-dependent cardiac decline. Our findings are conserved in aged non-human primates and mice, demonstrating that age-dependent nuclear remodeling is a major mechanism contributing to cardiac dysfunction.


Subject(s)
Cell Nucleus , Heart Diseases , Mice , Animals , Cell Nucleus/genetics , Myocytes, Cardiac/metabolism , Chromatin/metabolism , Heart Diseases/metabolism , Transcription Factors/genetics , Mammals/genetics
4.
Int J Mol Sci ; 23(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35328698

ABSTRACT

The presence of lymph node metastases in endometrial cancer patients is a critical factor guiding treatment decisions; however, surgical and imaging methods for their detection are limited by morbidity and inaccuracy. To determine if sera can predict the presence of positive lymph nodes, sera collected from endometrial cancer patients with or without lymph node metastases, and benign gynecology surgical patients (N = 20 per group) were subjected to electron spray ionization mass spectrometry (ES-MS). Peaks that were significantly different among the groups were evaluated by leave one out cross validation (LOOCV) for their ability to differentiation between the groups. Proteins in the peaks were identified by MS/MS of five specimens in each group. Ingenuity Pathway Analysis was used to predict pathways regulated by the protein profiles. LOOCV of sera protein discriminated between each of the group comparisons and predicted positive lymph nodes. Pathways implicated in metastases included loss of PTEN activation and PI3K, AKT and PKA activation, leading to calcium signaling, oxidative phosphorylation and estrogen receptor-induced transcription, leading to platelet activation, epithelial-to-mesenchymal transition and senescence. Upstream activators implicated in these events included neurostimulation and inflammation, activation of G-Protein-Coupled Receptor Gßγ, loss of HER-2 activation and upregulation of the insulin receptor.


Subject(s)
Endometrial Neoplasms , Tandem Mass Spectrometry , Endometrial Neoplasms/pathology , Female , Humans , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Oncogenes
5.
Brain Sci ; 12(1)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35053843

ABSTRACT

Current therapies for high-grade gliomas, particularly glioblastomas (GBM), do not extend patient survival beyond 16-22 months. OKN-007 (OKlahoma Nitrone 007), which is currently in phase II (multi-institutional) clinical trials for GBM patients, and has demonstrated efficacy in several rodent and human xenograft glioma models, shows some promise as an anti-glioma therapeutic, as it affects most aspects of tumorigenesis (tumor cell proliferation, angiogenesis, migration, and apoptosis). Combined with the chemotherapeutic agent temozolomide (TMZ), OKN-007 is even more effective by affecting chemo-resistant tumor cells. In this study, mass spectrometry (MS) methodology ESI-MS, mass peak analysis (Leave One Out Cross Validation (LOOCV) and tandem MS peptide sequence analyses), and bioinformatics analyses (Ingenuity® Pathway Analysis (IPA®)), were used to identify up- or down-regulated proteins in the blood sera of F98 glioma-bearing rats, that were either untreated or treated with OKN-007. Proteins of interest identified by tandem MS-MS that were decreased in sera from tumor-bearing rats that were either OKN-007-treated or untreated included ABCA2, ATP5B, CNTN2, ITGA3, KMT2D, MYCBP2, NOTCH3, and VCAN. Conversely, proteins of interest in tumor-bearing rats that were elevated following OKN-007 treatment included ABCA6, ADAMTS18, VWA8, MACF1, and LAMA5. These findings, in general, support our previous gene analysis, indicating that OKN-007 may be effective against the ECM. These findings also surmise that OKN-007 may be more effective against oligodendrogliomas, other brain tumors such as medulloblastoma, and possibly other types of cancers.

6.
J Mol Cell Cardiol ; 164: 58-68, 2022 03.
Article in English | MEDLINE | ID: mdl-34826415

ABSTRACT

Since the initial isolation of human embryonic stem cells and subsequent discovery of reprogramming methods for somatic cells, thousands of protocols have been developed to create each of the hundreds of cell types found in-vivo with significant focus on disease-prone systems, e.g., cardiovascular. Robust protocols exist for many of these cell types, except for cardiac fibroblasts (CF). Very recently, several competing methods have been developed to generate these cells through a developmentally conserved epicardial pathway. Such methods generate epicardial cells, but here we report that prolonged exposure to growth factors such as bFGF induces fibroblast spindle-like morphology and similar chromatin architecture to primary CFs. Media conditions for growth and assays are provided, as well as suggestions for seeding densities and timepoints for protein harvest of extracellular matrix. We demonstrate marker expression and matrix competency of resultant cells as shown next to primary human cardiac fibroblasts. These methods provide additional guidance to the original protocol and result in an increasingly stable phenotype.


Subject(s)
Human Embryonic Stem Cells , Induced Pluripotent Stem Cells , Cell Differentiation , Cells, Cultured , Cellular Reprogramming , Chromatin/metabolism , Fibroblasts/metabolism , Heart , Humans , Induced Pluripotent Stem Cells/metabolism
7.
Cell ; 184(24): 5985-6001.e19, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34774128

ABSTRACT

Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell type resolution. To profile the activity of gene regulatory elements in diverse cell types and tissues in the human body, we applied single-cell chromatin accessibility assays to 30 adult human tissue types from multiple donors. We integrated these datasets with previous single-cell chromatin accessibility data from 15 fetal tissue types to reveal the status of open chromatin for ∼1.2 million candidate cis-regulatory elements (cCREs) in 222 distinct cell types comprised of >1.3 million nuclei. We used these chromatin accessibility maps to delineate cell-type-specificity of fetal and adult human cCREs and to systematically interpret the noncoding variants associated with complex human traits and diseases. This rich resource provides a foundation for the analysis of gene regulatory programs in human cell types across tissues, life stages, and organ systems.


Subject(s)
Chromatin/metabolism , Genome, Human , Single-Cell Analysis , Adult , Cluster Analysis , Fetus/metabolism , Genetic Variation , Genome-Wide Association Study , Humans , Organ Specificity , Phylogeny , Regulatory Sequences, Nucleic Acid/genetics , Risk Factors
8.
Brain Sci ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946285

ABSTRACT

It is important to develop minimally invasive biomarker platforms to help in the identification and monitoring of patients with Alzheimer's disease (AD). Assisting in the understanding of biochemical mechanisms as well as identifying potential novel biomarkers and therapeutic targets would be an added benefit of such platforms. This study utilizes a simplified and novel serum profiling platform, using mass spectrometry (MS), to help distinguish AD patient groups (mild and moderate) and controls, as well as to aid in understanding of biochemical phenotypes and possible disease development. A comparison of discriminating sera mass peaks between AD patients and control individuals was performed using leave one [serum sample] out cross validation (LOOCV) combined with a novel peak classification valuation (PCV) procedure. LOOCV/PCV was able to distinguish significant sera mass peak differences between a group of mild AD patients and control individuals with a p value of 10-13. This value became non-significant (p = 0.09) when the same sera samples were randomly allocated between the two groups and reanalyzed by LOOCV/PCV. This is indicative of physiological group differences in the original true-pathology binary group comparison. Similarities and differences between AD patients and traumatic brain injury (TBI) patients were also discernable using this novel LOOCV/PCV platform. MS/MS peptide analysis was performed on serum mass peaks comparing mild AD patients with control individuals. Bioinformatics analysis suggested that cell pathways/biochemical phenotypes affected in AD include those involving neuronal cell death, vasculature, neurogenesis, and AD/dementia/amyloidosis. Inflammation, autoimmunity, autophagy, and blood-brain barrier pathways also appear to be relevant to AD. An impaired VWF/ADAMTS13 vasculature axis with connections to F8 (factor VIII) and LRP1 and NOTCH1 was indicated and is proposed to be important in AD development.

9.
Sci Adv ; 7(20)2021 05.
Article in English | MEDLINE | ID: mdl-33990324

ABSTRACT

Misregulated gene expression in human hearts can result in cardiovascular diseases that are leading causes of mortality worldwide. However, the limited information on the genomic location of candidate cis-regulatory elements (cCREs) such as enhancers and promoters in distinct cardiac cell types has restricted the understanding of these diseases. Here, we defined >287,000 cCREs in the four chambers of the human heart at single-cell resolution, which revealed cCREs and candidate transcription factors associated with cardiac cell types in a region-dependent manner and during heart failure. We further found cardiovascular disease-associated genetic variants enriched within these cCREs including 38 candidate causal atrial fibrillation variants localized to cardiomyocyte cCREs. Additional functional studies revealed that two of these variants affect a cCRE controlling KCNH2/HERG expression and action potential repolarization. Overall, this atlas of human cardiac cCREs provides the foundation for illuminating cell type-specific gene regulation in human hearts during health and disease.


Subject(s)
Heart , Regulatory Sequences, Nucleic Acid , Humans , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/metabolism
10.
Nat Struct Mol Biol ; 28(2): 152-161, 2021 02.
Article in English | MEDLINE | ID: mdl-33398174

ABSTRACT

The CCCTC-binding factor (CTCF) works together with the cohesin complex to drive the formation of chromatin loops and topologically associating domains, but its role in gene regulation has not been fully defined. Here, we investigated the effects of acute CTCF loss on chromatin architecture and transcriptional programs in mouse embryonic stem cells undergoing differentiation to neural precursor cells. We identified CTCF-dependent enhancer-promoter contacts genome-wide and found that they disproportionately affect genes that are bound by CTCF at the promoter and are dependent on long-distance enhancers. Disruption of promoter-proximal CTCF binding reduced both long-range enhancer-promoter contacts and transcription, which were restored by artificial tethering of CTCF to the promoter. Promoter-proximal CTCF binding is correlated with the transcription of over 2,000 genes across a diverse set of adult tissues. Taken together, the results of our study show that CTCF binding to promoters may promote long-distance enhancer-dependent transcription at specific genes in diverse cell types.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Mouse Embryonic Stem Cells/metabolism , Neural Stem Cells/metabolism , Animals , Binding Sites , Cell Line , Enhancer Elements, Genetic , Gene Expression Regulation , Mice , Mouse Embryonic Stem Cells/cytology , Neural Stem Cells/cytology , Promoter Regions, Genetic , Protein Binding , Transcriptional Activation
11.
PLoS One ; 15(8): e0237064, 2020.
Article in English | MEDLINE | ID: mdl-32823271

ABSTRACT

A major source of epilepsy is Neurocysticercosis (NCC), caused by Taenia solium infection. Solitary cysticercus granuloma (SCG), a sub-group of NCC induced epilepsy, is the most common form of NCC in India. Current diagnostic criteria for SCG epilepsy require brain imaging which may not be available in communities where the disease is endemic. Identification of serum changes and potential biomolecules that could distinguish SCG epilepsy from idiopathic generalized epilepsy (IE), without the initial need for imaging, could assist in disease identification, understanding, and treatment. The objective here was to investigate, using mass spectrometry (MS), sera biomolecule differences between patients with SCG epilepsy or IE to help distinguish these disorders based on physiological differences, to understand underlying phenotypes and mechanisms, and to lay ground work for future therapeutic and biomarker analyses. Sera were obtained from patients with SCG or IE (N = 29 each group). Serum mass peak profiling was performed with electrospray ionization (ESI) MS, and mass peak area means in the two groups were compared using leave one [serum sample] out cross validation (LOOCV). Serum LOOCV analysis identified significant differences between SCG and IE patient groups (p = 10-20), which became non-significant (p = 0.074) when the samples were randomly allocated to the groups and reanalyzed. Tandem MS/MS peptide analysis of serum mass peaks from SCG or IE patients was performed to help identify potential peptide/protein biochemical and phenotypic changes involving these two forms of epilepsy. Bioinformatic analysis of these peptide/protein changes suggested neurological, inflammatory, seizure, blood brain barrier, cognition, ion channel, cell death, and behavior related biochemical systems were being altered in these disease states. This study provides groundwork for aiding in distinguishing SCG and IE patients in minimally invasive, lower-cost manners, for improving understanding of underlying epilepsy mechanisms, and for further identifying discriminatory biomarkers and potential therapeutic targets.


Subject(s)
Epilepsy, Generalized/diagnosis , Neurocysticercosis/diagnosis , Adult , Animals , Biomarkers/blood , Cysticercus/pathogenicity , Diagnosis, Differential , Epilepsy/complications , Epilepsy/diagnosis , Epilepsy/drug therapy , Epilepsy, Generalized/drug therapy , Epilepsy, Generalized/metabolism , Female , Granuloma/drug therapy , Humans , India/epidemiology , Male , Middle Aged , Neurocysticercosis/drug therapy , Neurocysticercosis/metabolism , Seizures/drug therapy , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
12.
Brain Sci ; 10(8)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751954

ABSTRACT

Diagnosis of non-symptomatic epilepsy includes a history of two or more seizures and brain imaging to rule out structural changes like trauma, tumor, infection. Such analysis can be problematic. It is important to develop capabilities to help identify non-symptomatic epilepsy in order to better monitor and understand the condition. This understanding could lead to improved diagnostics and therapeutics. Serum mass peak profiling was performed using electrospray ionization mass spectrometry (ESI-MS). A comparison of sera mass peaks between epilepsy and control groups was performed via leave one [serum sample] out cross-validation (LOOCV). MS/MS peptide analysis was performed on serum mass peaks to compare epilepsy patient and control groups. LOOCV identified significant differences between the epilepsy patient group and control group (p = 10-22). This value became non-significant (p = 0.10) when the samples were randomly allocated between the groups and reanalyzed by LOOCV. LOOCV was thus able to distinguish a non-symptomatic epilepsy patient group from a control group based on physiological differences and underlying phenotype. MS/MS was able to identify potential peptide/protein changes involved in this epilepsy versus control comparison, with 70% of the top 100 proteins indicating overall neurologic function. Specifically, peptide/protein sera changes suggested neuro-inflammatory, seizure, ion-channel, synapse, and autoimmune pathways changing between epilepsy patients and controls.

13.
PLoS One ; 15(8): e0234539, 2020.
Article in English | MEDLINE | ID: mdl-32756554

ABSTRACT

Diabetes Mellitus (DM) accelerates coronary artery disease (CAD) and atherosclerosis, the causes of most heart attacks. The biomolecules involved in these inter-related disease processes are not well understood. This study analyzes biomolecules in the sera of patients with CAD, with and without type (T) 2DM, who are about to undergo coronary artery bypass graft (CABG) surgery. The goal is to develop methodology to help identify and monitor CAD patients with and without T2DM, in order to better understand these phenotypes and to glean relationships through analysis of serum biomolecules. Aorta, fat, muscle, and vein tissues from CAD T2DM patients display diabetic-related histologic changes (e.g., lipid accumulation, fibrosis, loss of cellularity) when compared to non-diabetic CAD patients. The patient discriminatory methodology utilized is serum biomolecule mass profiling. This mass spectrometry (MS) approach is able to distinguish the sera of a group of CAD patients from controls (p value 10-15), with the CAD group containing both T2DM and non-diabetic patients. This result indicates the T2DM phenotype does not interfere appreciably with the CAD determination versus control individuals. Sera from a group of T2DM CAD patients however are distinguishable from non-T2DM CAD patients (p value 10-8), indicating it may be possible to examine the T2DM phenotype within the CAD disease state with this MS methodology. The same serum samples used in the CAD T2DM versus non-T2DM binary group comparison were subjected to MS/MS peptide structure analysis to help identify potential biochemical and phenotypic changes associated with CAD and T2DM. Such peptide/protein identifications could lead to improved understanding of underlying mechanisms, additional biomarkers for discriminating and monitoring these disease conditions, and potential therapeutic targets. Bioinformatics/systems biology analysis of the peptide/protein changes associated with CAD and T2DM suggested cell pathways/systems affected include atherosclerosis, DM, fibrosis, lipogenesis, loss of cellularity (apoptosis), and inflammation.


Subject(s)
Coronary Artery Disease/blood , Coronary Artery Disease/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Angiopathies/blood , Adult , Aged , Biomarkers/blood , Blood Proteins/metabolism , Case-Control Studies , Coronary Artery Bypass , Coronary Artery Disease/surgery , Cross-Sectional Studies , Diabetic Angiopathies/surgery , Female , Humans , Male , Middle Aged , Phenotype , Retrospective Studies , Spectrometry, Mass, Electrospray Ionization , Systems Biology , Tandem Mass Spectrometry
14.
Nat Commun ; 10(1): 2157, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089138

ABSTRACT

T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8+ T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8+ T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155-Phf19-PRC2 as a pivotal axis regulating CD8+ T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/immunology , MicroRNAs/metabolism , Skin Neoplasms/immunology , Transcription Factors/metabolism , Adoptive Transfer/methods , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation/genetics , Cell Differentiation/immunology , Cellular Senescence/genetics , Cellular Senescence/immunology , Epigenesis, Genetic/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Polycomb Repressive Complex 2/immunology , Polycomb Repressive Complex 2/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Transcription Factors/genetics , Transcription Factors/immunology
15.
PLoS One ; 14(4): e0215762, 2019.
Article in English | MEDLINE | ID: mdl-31026304

ABSTRACT

Traumatic Brain Injury (TBI) and persistent post-concussion syndrome (PCS) including chronic migraine (CM) are major health issues for civilians and the military. It is important to understand underlying biochemical mechanisms of these conditions, and be able to monitor them in an accurate and minimally invasive manner. This study describes the initial use of a novel serum analytical platform to help distinguish TBI patients, including those with post-traumatic headache (PTH), and to help identify phenotypes at play in these disorders. The hypothesis is that physiological responses to disease states like TBI and PTH and related bodily stresses are reflected in biomolecules in the blood in disease-specific manner. Leave one out (serum sample) cross validations (LOOCV) and sample randomizations were utilized to distinguished serum samples from the following TBI patient groups: TBI +PTSD + CM + severe depression (TBI "most affected" group) vs healthy controls, TBI "most affected" vs TBI, TBI vs controls, TBI + CM vs controls, and TBI + CM vs TBI. Inter-group discriminatory p values were ≤ 10-10, and sample group randomizations resulted in p non-significant values. Peptide/protein identifications of discriminatory mass peaks from the TBI "most affected" vs controls and from the TBI plus vs TBI minus CM groups yielded information of the cellular/molecular effects of these disorders (immune responses, amyloidosis/Alzheimer's disease/dementia, neuronal development). More specific biochemical disease effects appear to involve blood brain barrier, depression, migraine headache, autoimmunity, and autophagy pathways. This study demonstrated the ability for the first time of a novel, accurate, biomarker platform to monitor these conditions in serum, and help identify biochemical relationships leading to better understanding of these disorders and to potential therapeutic approaches.


Subject(s)
Brain Injuries, Traumatic/complications , Migraine Disorders/diagnosis , Post-Concussion Syndrome/diagnosis , Veterans , War-Related Injuries/complications , Adult , Afghan Campaign 2001- , Chronic Disease , Depression/blood , Depression/diagnosis , Depression/etiology , Diagnosis, Differential , Female , Humans , Iraq War, 2003-2011 , Male , Middle Aged , Migraine Disorders/blood , Migraine Disorders/etiology , Post-Concussion Syndrome/blood , Post-Concussion Syndrome/etiology , Retrospective Studies , Stress Disorders, Post-Traumatic/blood , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/etiology , United States
16.
Nat Immunol ; 20(3): 337-349, 2019 03.
Article in English | MEDLINE | ID: mdl-30778251

ABSTRACT

Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8+ T cell memory compartment. Following viral infection, CD8+ T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8+ T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8+ T cell stemness and highlight its therapeutic potential.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Neoplasms, Experimental/immunology , Proto-Oncogene Proteins c-myb/immunology , Stem Cells/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Differentiation/immunology , Cell Line, Tumor , HEK293 Cells , Humans , Immunologic Memory/genetics , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/metabolism , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/virology , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Stem Cells/metabolism , Stem Cells/virology , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/immunology , T Cell Transcription Factor 1/metabolism
17.
Exp Parasitol ; 192: 98-107, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30096291

ABSTRACT

Neurocysticercosis is associated with epilepsy in pig-raising communities with poor sanitation. Current internationally recognized diagnostic guidelines for neurocysticercosis rely on brain imaging, a technology that is frequently not available or not accessible in areas endemic for neurocysticercosis. Minimally invasive and low-cost aids for diagnosing neurocysticercosis epilepsy could improve treatment of neurocysticercosis. The goal of this study was to test the extent to which patients with neurocysticercosis epilepsy, epilepsy of unknown etiology, idiopathic headaches and among different types of neurocysticercosis lesions could be distinguished from each other based on serum mass profiling. For this, we collected sera from patients with neurocysticercosis-associated epilepsy, epilepsy of unknown etiology, recovered neurocysticercosis, and idiopathic headaches then performed binary group comparisons among them using electrospray ionization mass spectrometry. A leave one [serum sample] out cross validation procedure was employed to analyze spectral data. Sera from neurocysticercosis patients was distinguished from epilepsy of unknown etiology patients with a p-value of 10-28. This distinction was lost when samples were randomized to either group (p-value = 0.22). Similarly, binary comparisons of patients with neurocysticercosis who has different types of lesions showed that different forms of this disease were also distinguishable from one another. These results suggest neurocysticercosis epilepsy can be distinguished from epilepsy of unknown etiology based on biomolecular differences in sera detected by mass profiling.


Subject(s)
Epilepsy/diagnosis , Neurocysticercosis/diagnosis , Adolescent , Adult , Animals , Brain Edema/complications , Diagnosis, Differential , Epilepsy/blood , Female , Humans , India , Male , Middle Aged , Neurocysticercosis/blood , Neurocysticercosis/complications , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization , Swine , Swine Diseases/parasitology , Swine Diseases/transmission , Tension-Type Headache/blood , Tension-Type Headache/diagnosis , Young Adult
18.
Blood Coagul Fibrinolysis ; 29(1): 25-29, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28901997

ABSTRACT

: Intraventricular hemorrhage (IVH) is a significant cause of morbidity in extremely premature infants despite many advances in neonatal intensive care. We conducted an institutional retrospective review aimed to correlate risk factors associated with IVH. Clinical variables reported to the Vermont-Oxford Network on less than 30 weeks gestational age infants over a 5-year period were evaluated with Pearson's chi-square and multivariate logistic regression. Of 618 infants born less than 30-week gestational age, 178 (28.8%) experienced IVH. Of those less than 1000 g, 105 (36.5%) of 288 infants experienced IVH. Multivariate analysis revealed that thrombocytopenia [odds ratio (OR) 2.03, 95% confidence interval (CI) 1.30-3.19, P = 0.0020] and cardiopulmonary resuscitation (CPR) ±â€Šintubation at delivery (OR 1.84, 95% CI 1.12-3.02, P = 0.0162) were independently associated with IVH. Among infants less than 1000 g, thrombocytopenia (OR 2.09, 95% CI 1.22-3.60, P = 0.0077) and CPR ±â€Šintubation at delivery (OR 2.01, 95% CI 1.10-3.68, P = 0.0229) were also significantly associated with IVH. IVH is a complex phenomenon with many contributing risk factors. In our study, infants less than 30-week gestational age and less than 1000 g revealed thrombocytopenia and CPR ±â€Šintubation in delivery room were independently associated with IVH. These data should alert clinicians to those neonates most likely to suffer IVH.


Subject(s)
Cerebral Hemorrhage/etiology , Infant, Premature, Diseases/etiology , Cerebral Hemorrhage/pathology , Female , Humans , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/pathology , Male , Pregnancy , Pregnancy Complications , Retrospective Studies , Risk Factors
19.
Cancer Invest ; 35(9): 573-585, 2017 Oct 21.
Article in English | MEDLINE | ID: mdl-28949774

ABSTRACT

A stage I non-small cell lung cancer (NSCLC) serum profiling platform is presented which is highly efficient and accurate. Test sensitivity (0.95) for stage I NSCLC is the highest reported so far. Test metrics are reported for discriminating stage I adenocarcinoma vs squamous cell carcinoma subtypes. Blinded analysis identified 23 out of 24 stage I NSCLC and control serum samples. Group-discriminating mass peaks were targeted for tandem mass spectrometry peptide/protein identification, and yielded a lung cancer phenotype. Bioinformatic analysis revealed a novel lymphocyte adhesion pathway involved with early-stage lung cancer.


Subject(s)
Adenocarcinoma/blood , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Squamous Cell/blood , Lung Neoplasms/blood , Proteomics/methods , Tandem Mass Spectrometry , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Case-Control Studies , Cell Adhesion , Computational Biology , Databases, Protein , Diagnosis, Differential , Female , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Middle Aged , Neoplasm Staging , Phenotype , Predictive Value of Tests
20.
Blood ; 128(4): 519-28, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27226436

ABSTRACT

Long-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound and sustained tumor regression but their rareness poses a major hurdle to their clinical application. Presently, clinically compliant procedures to generate relevant numbers of this T-cell population are undefined. Here, we provide a strategy for deriving large numbers of clinical-grade tumor-redirected TSCM starting from naive precursors. CD8(+)CD62L(+)CD45RA(+) naive T cells enriched by streptamer-based serial-positive selection were activated by CD3/CD28 engagement in the presence of interleukin-7 (IL-7), IL-21, and the glycogen synthase-3ß inhibitor TWS119, and genetically engineered to express a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions enabled the generation of CD19-CAR-modified CD8(+) TSCM that were phenotypically, functionally, and transcriptomically equivalent to their naturally occurring counterpart. Compared with CD8(+) T cells generated with clinical protocols currently under investigation, CD19-CAR-modified CD8(+) TSCM exhibited enhanced metabolic fitness and mediated robust, long-lasting antitumor responses against systemic acute lymphoblastic leukemia xenografts. This clinical-grade platform provides the basis for a phase 1 trial evaluating the activity of CD19-CAR-modified CD8(+) TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell transplantation.


Subject(s)
Adoptive Transfer , Antigens, CD19/immunology , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Hematologic Neoplasms/therapy , Immunologic Memory , Receptors, Antigen, T-Cell/immunology , Animals , Antigens, CD19/genetics , B-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Antigen, T-Cell/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...