Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Sci Data ; 11(1): 178, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326362

ABSTRACT

The Pseudomonas syringae species complex (PSSC) is a diverse group of plant pathogens with a collective host range encompassing almost every food crop grown today. As a threat to global food security, rapid detection and characterization of epidemic and emerging pathogenic lineages is essential. However, phylogenetic identification is often complicated by an unclarified and ever-changing taxonomy, making practical use of available databases and the proper training of classifiers difficult. As such, while amplicon sequencing is a common method for routine identification of PSSC isolates, there is no efficient method for accurate classification based on this data. Here we present a suite of five Naïve bayes classifiers for PCR primer sets widely used for PSSC identification, trained on in-silico amplicon data from 2,161 published PSSC genomes using the life identification number (LIN) hierarchical clustering algorithm in place of traditional Linnaean taxonomy. Additionally, we include a dataset for translating classification results back into traditional taxonomic nomenclature (i.e. species, phylogroup, pathovar), and for predicting virulence factor repertoires.


Subject(s)
Plant Diseases , Pseudomonas syringae , Phylogeny , Plant Diseases/microbiology , Plants , Pseudomonas syringae/classification , Pseudomonas syringae/genetics
2.
Microbiol Spectr ; 11(6): e0197823, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37831469

ABSTRACT

IMPORTANCE: Agaricus bisporus is an economically important edible mushroom and manipulating its developmental patterns is crucial for maximizing yield and quality. One of the potential strategies for achieving such a goal is passaging microbial communities in compost or casing. The current study demonstrated that passaging substrates develop enriched microbial communities, and after a few passages, certain levels of changes in mushroom developmental patterns (the timing of fruiting bodies formation) were observed as well as shifts in the bacterial communities. Overall, a better understanding of the complex interactions between microorganisms present in the cultivation system may help farmers and researchers to develop more efficient and sustainable cultivation practices that can both benefit the environment and human health.


Subject(s)
Agaricus , Composting , Microbiota , Humans , Bacteria , Soil
3.
Mol Plant Pathol ; 24(8): 989-998, 2023 08.
Article in English | MEDLINE | ID: mdl-37132320

ABSTRACT

The Pseudomonas syringae species complex is composed of several closely related species of bacterial plant pathogens. Here, we used in silico methods to assess 16 PCR primer sets designed for broad identification of isolates throughout the species complex. We evaluated their in silico amplification rate in 2161 publicly available genomes, the correlation between pairwise amplicon sequence distance and whole genome average nucleotide identity, and trained naive Bayes classification models to quantify classification resolution. Furthermore, we show the potential for using single amplicon sequence data to predict type III effector protein repertoires, which are important determinants of host specificity and range.


Subject(s)
Pseudomonas syringae , Virulence Factors , Virulence/genetics , Bayes Theorem , Phylogeny , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology
4.
Phytopathology ; 113(2): 150-159, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36131391

ABSTRACT

Mycopathogenic bacteria play a pivotal role in the productivity of edible mushrooms grown under controlled conditions. In this study, we carried out a comprehensive farm survey and sampling (2018 to 2021) on button mushroom (Agaricus bisporus) farms in 15 provinces in Iran to monitor the status of bacterial pathogens infecting the crop. Mycopathogenic bacterial strains were isolated from pins, stems, and caps, as well as the casing layer on 38 mushroom farms. The bacterial strains incited symptoms on mushroom caps ranging from faint discoloration to dark brown and blotch of the inoculated surfaces. Among the bacterial strains inciting disease symptoms on bottom mushroom, 40 were identified as Ewingella americana based on biochemical assays and phylogeny of 16S rRNA and the gyrB gene. E. americana strains differed in their aggressiveness on mushroom caps and stipes, where the corresponding symptoms ranged from deep yellow to dark brown. In the phylogenetic analyses, all E. americana strains isolated in this study were clustered in a monophyletic clade closely related to the nonpathogenic and environmental strains of the species. BOX-PCR-based fingerprinting revealed intraspecific diversity. Using the cutoff level of 73 to 76% similarity, the strains formed six clusters. A chronological pattern was observed, where the strains isolated in 2018 were differentiated from those isolated in 2020 and 2021. Taken together, due to the multifaceted nature of the pathogen, such a widespread occurrence of E. americana on mushroom farms in Iran could be an emerging threat for the mushroom industry in the country.


Subject(s)
Enterobacteriaceae , Plant Diseases , Phylogeny , RNA, Ribosomal, 16S/genetics , Enterobacteriaceae/genetics , Bacteria/genetics
5.
mSphere ; 7(5): e0030322, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36040048

ABSTRACT

In response to the demand for N95 respirators by health care workers during the COVID-19 pandemic, we evaluated decontamination of N95 respirators using an aerosolized hydrogen peroxide (aHP) system. This system is designed to dispense a consistent atomized spray of aerosolized, 7% hydrogen peroxide (H2O2) solution over a treatment cycle. Multiple N95 respirator models were subjected to 10 or more cycles of respirator decontamination, with a select number periodically assessed for qualitative and quantitative fit testing. In parallel, we assessed the ability of aHP treatment to inactivate multiple viruses absorbed onto respirators, including phi6 bacteriophage, herpes simplex virus 1 (HSV-1), coxsackievirus B3 (CVB3), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For pathogens transmitted via respiratory droplets and aerosols, it is critical to address respirator safety for reuse. This study provided experimental validation of an aHP treatment process that decontaminates the respirators while maintaining N95 function. External National Institute for Occupational Safety & Health (NIOSH) certification verified respirator structural integrity and filtration efficiency after 10 rounds of aHP treatment. Virus inactivation by aHP was comparable to the decontamination of commercial spore-based biological indicators. These data demonstrate that the aHP process is effective, with successful fit-testing of respirators after multiple aHP cycles, effective decontamination of multiple virus species, including SARS-CoV-2, successful decontamination of bacterial spores, and filtration efficiency maintained at or greater than 95%. While this study did not include extended or clinical use of N95 respirators between aHP cycles, these data provide proof of concept for aHP decontamination of N95 respirators before reuse in a crisis-capacity scenario. IMPORTANCE The COVID-19 pandemic led to unprecedented pressure on health care and research facilities to provide personal protective equipment. The respiratory nature of the SARS-CoV2 pathogen makes respirator facepieces a critical protective measure to limit inhalation of this virus. While respirator facepieces were designed for single use and disposal, the pandemic increased overall demand for N95 respirators, and corresponding manufacturing and supply chain limitations necessitated the safe reuse of respirators when necessary. In this study, we repurposed an aerosolized hydrogen peroxide (aHP) system that is regularly utilized to decontaminate materials in a biosafety level 3 (BSL3) facility, to develop a method for decontamination of N95 respirators. Results from viral inactivation, biological indicators, respirator fit testing, and filtration efficiency testing all indicated that the process was effective at rendering N95 respirators safe for reuse. This proof-of-concept study establishes baseline data for future testing of aHP in crisis-capacity respirator-reuse scenarios.


Subject(s)
COVID-19 , N95 Respirators , Humans , COVID-19/prevention & control , Pandemics/prevention & control , Hydrogen Peroxide/pharmacology , SARS-CoV-2 , Virus Inactivation , Decontamination/methods , Feasibility Studies , RNA, Viral , Equipment Reuse
6.
Environ Microbiol Rep ; 14(5): 785-794, 2022 10.
Article in English | MEDLINE | ID: mdl-35700743

ABSTRACT

Bacteria compete for resources in diverse environments using an array of antagonistic strategies, including the production of narrow-spectrum protein antibacterials termed bacteriocins. Although significant research has focused on bacteriocin-mediated dynamics in culture environments, little research has explored bacteriocin-mediated dynamics within a host context, particularly in plant environments. Here, we show that a bacterial plant pathogen, Pseudomonas syringae pv. syringae (Psy), expresses a bacteriocin both in culture and in leaf apoplast when co-inoculated with a bacteriocin-sensitive competitor, P. syringae pv. phaseolicola (Pph). Although there is an observable negative effect of the bacteriocin on the Pph population at most time points both in culture and in the leaf apoplast, a bacteriocin-mediated benefit to Psy was only observed when the producing strain was co-infiltrated at a low population frequency (1:9) into the leaf apoplast. At 6 days post-infiltration, Psy achieved an eightfold population increase compared to a bacteriocin-deficient mutant in the apoplast. No bacteriocin-mediated benefit for Psy was observed under the culture conditions tested. Additionally, we found that the bacteriocin-mediated benefit for Psy was dependent on the Type III Secretion System. Taken together, our results demonstrate that the fitness benefit of bacteriocin-mediated antagonism is influenced by interactions within the host plant.


Subject(s)
Bacteriocins , Plant Diseases , Bacteriocins/pharmacology , Plant Diseases/microbiology , Plant Leaves/microbiology , Pseudomonas syringae/genetics , Type III Secretion Systems
7.
mSystems ; 7(2): e0009122, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35293790

ABSTRACT

Symbiosis with bacteria is widespread among eukaryotes, including fungi. Bacteria that live within fungal mycelia (endohyphal bacteria) occur in many plant-associated fungi, including diverse Mucoromycota and Dikarya. Pestalotiopsis sp. strain 9143 is a filamentous ascomycete isolated originally as a foliar endophyte of Platycladus orientalis (Cupressaceae). It is infected naturally with the endohyphal bacterium Luteibacter sp. strain 9143, which influences auxin and enzyme production by its fungal host. Previous studies have used transcriptomics to examine similar symbioses between endohyphal bacteria and root-associated fungi such as arbuscular mycorrhizal fungi and plant pathogens. However, currently there are no gene expression studies of endohyphal bacteria of Ascomycota, the most species-rich fungal phylum. To begin to understand such symbioses, we developed methods for assessing gene expression by Pestalotiopsis sp. and Luteibacter sp. when grown in coculture and when each was grown axenically. Our assays showed that the density of Luteibacter sp. in coculture was greater than in axenic culture, but the opposite was true for Pestalotiopsis sp. Dual-transcriptome sequencing (RNA-seq) data demonstrate that growing in coculture modulates developmental and metabolic processes in both the fungus and bacterium, potentially through changes in the balance of organic sulfur via methionine acquisition. Our analyses also suggest an unexpected, potential role of the bacterial type VI secretion system in symbiosis establishment, expanding current understanding of the scope and dynamics of fungal-bacterial symbioses. IMPORTANCE Interactions between microbes and their hosts have important outcomes for host and environmental health. Foliar fungal endophytes that infect healthy plants can harbor facultative endosymbionts called endohyphal bacteria, which can influence the outcome of plant-fungus interactions. These bacterial-fungal interactions can be influential but are poorly understood, particularly from a transcriptome perspective. Here, we report on a comparative, dual-RNA-seq study examining the gene expression patterns of a foliar fungal endophyte and a facultative endohyphal bacterium when cultured together versus separately. Our findings support a role for the fungus in providing organic sulfur to the bacterium, potentially through methionine acquisition, and the potential involvement of a bacterial type VI secretion system in symbiosis establishment. This work adds to the growing body of literature characterizing endohyphal bacterial-fungal interactions, with a focus on a model facultative bacterial-fungal symbiosis in two species-rich lineages, the Ascomycota and Proteobacteria.


Subject(s)
Ascomycota , Fungi, Unclassified , Gammaproteobacteria , Type VI Secretion Systems , Xanthomonadaceae , Symbiosis , Endophytes , Pestalotiopsis , Ascomycota/genetics , Bacteria/genetics , Plants , Methionine
9.
Phytopathology ; 112(3): 561-566, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34320833

ABSTRACT

Tailocins are phage-derived bacteriocins that demonstrate great potential as agricultural antimicrobials given their high killing efficiency and their precise strain-specific targeting ability. Our group has categorized and characterized tailocins produced by and tailocin sensitivities of the phytopathogen Pseudomonas syringae, and here we extend these experiments to test whether prophylactic tailocin application can prevent infection of Nicotiana benthamiana by P. syringae pv. syringae B728a. Specifically, we demonstrate that multiple strains can produce tailocins that prevent infection by strain B728a and engineer a deletion mutant to prove that tailocin targeting is responsible for this protective effect. Lastly, we provide evidence that heritable resistance mutations do not explain the minority of cases in which tailocins fail to prevent infection. Our results extend previous reports of prophylactic use of tailocins against phytopathogens, and establish a model system with which to test and optimize tailocin application for prophylactic treatment to prevent phytopathogen infection.


Subject(s)
Bacteriocins , Pseudomonas syringae , Bacterial Proteins/genetics , Bacteriocins/genetics , Bacteriocins/pharmacology , Plant Diseases/prevention & control , Pseudomonas syringae/genetics
10.
mBio ; 12(2)2021 04 13.
Article in English | MEDLINE | ID: mdl-33849974

ABSTRACT

Antimicrobial treatment of bacteria often results in a small population of surviving tolerant cells, or persisters, that may contribute to recurrent infection. Antibiotic persisters are metabolically dormant, but the basis of their persistence in the presence of membrane-disrupting biological compounds is less well understood. We previously found that the model plant pathogen Pseudomonas syringae pv. phaseolicola 1448A (Pph) exhibits persistence to tailocin, a membrane-disrupting biocontrol compound with potential for sustainable disease control. Here, we compared physiological traits associated with persistence to tailocin and to the antibiotic streptomycin and established that both treatments leave similar frequencies of persisters. Microscopic profiling of treated populations revealed that while tailocin rapidly permeabilizes most cells, streptomycin treatment results in a heterogeneous population in the redox and membrane permeability state. Intact cells were sorted into three fractions according to metabolic activity, as indicated by a redox-sensing reporter dye. Streptomycin persisters were cultured from the fraction associated with the lowest metabolic activity, but tailocin persisters were cultured from a fraction associated with an active metabolic signal. Cells from culturable fractions were able to infect host plants, while the nonculturable fractions were not. Tailocin and streptomycin were effective in eliminating all persisters when applied sequentially, in addition to eliminating cells in other viable states. This study identifies distinct metabolic states associated with antibiotic persistence, tailocin persistence, and loss of virulence and demonstrates that tailocin is highly effective in eliminating dormant cells.IMPORTANCE Populations of genetically identical bacteria encompass heterogeneous physiological states. The small fraction of bacteria that are dormant can help the population survive exposure to antibiotics and other stresses, potentially contributing to recurring infection cycles in animal or plant hosts. Membrane-disrupting biological control treatments are effective in killing dormant bacteria, but these treatments also leave persister-like survivors. The current work demonstrates that in Pph, persisters surviving treatment with membrane-disrupting tailocin proteins have an elevated redox state compared to that of dormant streptomycin persisters. Combination treatment was effective in killing both persister types. Culturable persisters corresponded closely with infectious cells in each treated population, whereas the high-redox and unculturable fractions were not infectious. In linking redox states to heterogeneous phenotypes of tailocin persistence, streptomycin persistence, and infection capability, this work will inform the search for mechanisms and markers for each phenotype.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Microbial Viability/drug effects , Pseudomonas syringae/drug effects , Pseudomonas syringae/metabolism , Streptomycin/pharmacology , Metabolism/drug effects , Oxidation-Reduction , Phenotype , Pseudomonas syringae/growth & development
11.
Front Microbiol ; 12: 815911, 2021.
Article in English | MEDLINE | ID: mdl-35095819

ABSTRACT

Bacterial toxin-antitoxin (TA) systems consist of two or more adjacent genes, encoding a toxin and an antitoxin. TA systems are implicated in evolutionary and physiological functions including genome maintenance, antibiotics persistence, phage defense, and virulence. Eight classes of TA systems have been described, based on the mechanism of toxin neutralization by the antitoxin. Although studied well in model species of clinical significance, little is known about the TA system abundance and diversity, and their potential roles in stress tolerance and virulence of plant pathogens. In this study, we screened the genomes of 339 strains representing the genetic and lifestyle diversity of the Pseudomonas syringae species complex for TA systems. Using bioinformatic search and prediction tools, including SLING, BLAST, HMMER, TADB2.0, and T1TAdb, we show that P. syringae strains encode 26 different families of TA systems targeting diverse cellular functions. TA systems in this species are almost exclusively type II. We predicted a median of 15 TA systems per genome, and we identified six type II TA families that are found in more than 80% of strains, while others are more sporadic. The majority of predicted TA genes are chromosomally encoded. Further functional characterization of the predicted TA systems could reveal how these widely prevalent gene modules potentially impact P. syringae ecology, virulence, and disease management practices.

12.
J Bacteriol ; 202(13)2020 06 09.
Article in English | MEDLINE | ID: mdl-32312747

ABSTRACT

Phage tail-like bacteriocins (tailocins) are bacterially produced protein toxins that mediate competitive interactions between cocolonizing bacteria. Both theoretical and experimental research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive cells, sensitive cells outcompete resistant cells, and resistant cells outcompete producers. These so-called rock-paper-scissors dynamics explain how all three populations occupy the same environment, without one driving the others extinct. Using Pseudomonas syringae as a model, we demonstrate that otherwise sensitive cells survive bacteriocin exposure through a physiological mechanism. This mechanism allows cells to survive bacteriocin killing without acquiring resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival during a subsequent exposure. Tailocin persister cells were more prevalent in stationary- rather than log-phase cultures. Of the fraction of cells that gained detectable resistance, there was a range from complete (insensitive) to incomplete (partially sensitive) resistance. By using genomic sequencing and genetic engineering, we showed that a mutation in a hypothetical gene containing 8 to 10 transmembrane domains causes tailocin high persistence and that genes of various glycosyltransferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result indicates that bacteria likely utilize persistence to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance.IMPORTANCE Bacteriocins are bacterially produced protein toxins that are proposed as antibiotic alternatives. However, a deeper understanding of the responses of target bacteria to bacteriocin exposure is lacking. Here, we show that target cells of Pseudomonas syringae survive lethal bacteriocin exposure through both physiological persistence and genetic resistance mechanisms. Cells that are not growing rapidly rely primarily on persistence, whereas those growing rapidly are more likely to survive via resistance. We identified various mutations in lipopolysaccharide biogenesis-related regions involved in tailocin persistence and resistance. By assessing host fitness of various classes of mutants, we showed that persistence and subtle resistance are mechanisms P. syringae uses to survive competition and preserve host fitness. These results have important implications for developing bacteriocins as alternative therapeutic agents.


Subject(s)
Bacteriocins/pharmacology , Drug Resistance, Bacterial , Pseudomonas/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Viability/drug effects , Pseudomonas/genetics , Pseudomonas/growth & development , Pseudomonas/metabolism
13.
Plant Dis ; 104(5): 1445-1454, 2020 May.
Article in English | MEDLINE | ID: mdl-32181723

ABSTRACT

From September to December 2018, commercial button mushroom (Agaricus bisporus) farms in central Iran were surveyed to monitor the causal agent(s) of browning and blotch symptoms on mushroom caps. In addition to dozens of pseudomonads (i.e., Pseudomonas tolaasii and Pseudomonas reactans), six slow-growing gram-positive bacterial strains were isolated from blotched mushroom caps. These bacteria presented as creamy white, circular, smooth, nonfluorescent, and shiny colonies with whole margins resembling members of Microbacteriaceae (Actinobacteria). All of the actinobacterial strains were aggressively pathogenic on cut cap surface of two edible mushrooms (i.e., A. bisporus and Pleurotus eryngii), inducing brown pit symptoms 48 h postinoculation. The strains did not induce symptoms on the vegetables tested (i.e., carrot, cucumber, and potato), and they did not affect the growth of mycelium of tested plant-pathogenic fungi (i.e., Acremonium sp., Fusarium spp., and Phytopythium sp.). Phylogeny of 16S ribosomal RNA and multilocus sequence analysis of six housekeeping genes (i.e., atpD, dnaK, gyrB, ppK, recA, and rpoB) revealed that the bacterial strains belong to the actinobacterial genus Mycetocola spp., whereas the species status of the strains remains undetermined. Mushroom-associated Mycetocola species were previously reported to be capable of detoxifying tolaasin, a toxin produced by P. tolaasii, whereas the strains isolated in this study did not show tolaasin detoxification activities. Altogether, this is the first report of a mushroom disease caused by an actinobacterial species, and "bacterial brown pit" was assigned as the common name of the disease.


Subject(s)
Actinomycetales , Agaricus , Bacteria , Iran , Pseudomonas
14.
Plant Dis ; 103(11): 2714-2732, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31560599

ABSTRACT

Among the biotic constraints of common mushroom (Agaricus bisporus) production, bacterial blotch is considered the most important mushroom disease in terms of global prevalence and economic impact. Etiology and management of bacterial blotch has been a major concern since its original description in 1915. Although Pseudomonas tolaasii is thought to be the main causal agent, various Pseudomonas species, as well as organisms from other genera have been reported to cause blotch symptoms on mushroom caps. In this review, we provide an updated overview on the etiology, epidemiology, and management strategies of bacterial blotch disease. First, diversity of the causal agent(s) and utility of high throughput sequencing-based approaches in the precise characterization and identification of blotch pathogen(s) is explained. Further, due to the limited options for use of conventional pesticides in mushroom farms against blotch pathogen(s), we highlight the role of balanced threshold of relative humidity and temperature in mushroom farms to combat the disease in organic and conventional production. Additionally, we discuss the possibility of the use of biological control agents (either antagonistic mushroom-associated bacterial strains or bacteriophages) for blotch management as one of the sustainable approaches for 21st century agriculture. Finally, we aim to elucidate the association of mushroom microbiome in cap development and productivity on one hand, and blotch incidence/outbreaks on the other hand.


Subject(s)
Agaricus , Food Microbiology , Pseudomonas , Food Microbiology/trends
15.
Trends Biotechnol ; 37(6): 572-573, 2019 06.
Article in English | MEDLINE | ID: mdl-31103070

ABSTRACT

There are many paths toward effective microbial inoculants for agriculture. Considering what is practical for the present day technological and farming landscape should not limit our creativity in developing innovative technologies. However, factors including production costs, practicality of implementation, and technology adoption by farmers will drive the success of new management approaches.


Subject(s)
Agricultural Inoculants , Agriculture , Ecology , Soil
16.
ISME J ; 13(2): 237-249, 2019 02.
Article in English | MEDLINE | ID: mdl-30171255

ABSTRACT

To better understand the potential for antagonistic interactions between members of the same bacterial species, we have surveyed bacteriocin killing activity across a diverse suite of strains of the phytopathogen Pseudomonas syringae. Our data demonstrate that killing activity from phage-derived bacteriocins of P. syringae (R-type syringacins) is widespread. Despite a high overall diversity of bacteriocin activity, strains can broadly be classified into five main killing types and two main sensitivity types. Furthermore, we show that killing activity switches frequently between strains and that switches correlate with localized recombination of two genes that together encode the proteins that specify bacteriocin targeting. Lastly, we demonstrate that phage-derived bacteriocin killing activity can be swapped between strains simply through expression of these two genes in trans. Overall, our study characterizes extensive diversity of killing activity for phage-derived bacteriocins of P. syringae across strains and highlights the power of localized recombination to alter phenotypes that mediate strain interactions during evolution of natural populations and communities.


Subject(s)
Bacteriocins/toxicity , Bacteriophages/metabolism , Pseudomonas syringae/genetics , Recombination, Genetic , Antibiosis , Bacteriocins/biosynthesis , Pseudomonas syringae/classification , Pseudomonas syringae/metabolism , Pseudomonas syringae/virology
17.
Trends Biotechnol ; 37(2): 140-151, 2019 02.
Article in English | MEDLINE | ID: mdl-30587413

ABSTRACT

Potentially beneficial microorganisms have been inoculated into agricultural soils for years. However, concurrent with sequencing advances and successful manipulation of host-associated microbiomes, industry and academia have recently boosted investments into microbial inoculants, convinced they can increase crop yield and reduce fertilizer and pesticide requirements. The efficacy of soil microbial inoculants remains unreliable, and unlike crop breeding, in which target traits (e.g., yield) have long been considered alongside environmental compatibility, microbial inoculant ecology is not sufficiently integrated into microbial selection and production. We propose a holistic temporal model of the shifting constraints on inoculants at five stages of product development and application, and highlight potential conflicts between stages. We question the feasibility of developing ideal soil microbial inoculants with current approaches.


Subject(s)
Agricultural Inoculants , Agriculture/methods , Soil Microbiology , Crops, Agricultural/growth & development
18.
J Vis Exp ; (119)2017 01 14.
Article in English | MEDLINE | ID: mdl-28117830

ABSTRACT

The soft-agar overlay technique was originally developed over 70 years ago and has been widely used in several areas of microbiological research, including work with bacteriophages and bacteriocins, proteinaceous antibacterial agents. This approach is relatively inexpensive, with minimal resource requirements. This technique consists of spotting supernatant from a donor strain (potentially harboring a toxic compound(s)) onto a solidified soft agar overlay that is seeded with a bacterial test strain (potentially sensitive to the toxic compound(s)). We utilized this technique to screen a library of Pseudomonas syringae strains for intraspecific killing. By combining this approach with a precipitation step and targeted gene deletions, multiple toxic compounds produced by the same strain can be differentiated. The two antagonistic agents commonly recovered using this technique are bacteriophages and bacteriocins. These two agents can be differentiated using two simple additional tests. Performing a serial dilution on a supernatant containing bacteriophage will result in individual plaques becoming less in number with greater dilution, whereas serial dilution of a supernatant containing bacteriocin will result a clearing zone that becomes uniformly more turbid with greater dilution. Additionally, a bacteriophage will produce a clearing zone when spotted onto a fresh soft agar overlay seeded with the same strain, whereas a bacteriocin will not produce a clearing zone when transferred to a fresh soft agar lawn, owing to the dilution of the bacteriocin.


Subject(s)
Agar , Anti-Bacterial Agents/isolation & purification , Bacteriocins/isolation & purification , Microbial Sensitivity Tests/methods
19.
Appl Environ Microbiol ; 82(10): 2943-2949, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26969692

ABSTRACT

Endohyphal bacteria (EHB) can influence fungal phenotypes and shape the outcomes of plant-fungal interactions. Previous work has suggested that EHB form facultative associations with many foliar fungi in the Ascomycota. These bacteria can be isolated in culture, and fungi can be cured of EHB using antibiotics. Here, we present methods for successfully introducing EHB into axenic mycelia of strains representing two classes of Ascomycota. We first establish in vitro conditions favoring reintroduction of two strains of EHB (Luteibacter sp.) into axenic cultures of their original fungal hosts, focusing on fungi isolated from healthy plant tissue as endophytes: Microdiplodia sp. (Dothideomycetes) and Pestalotiopsis sp. (Sordariomycetes). We then demonstrate that these EHB can be introduced into a novel fungal host under the same conditions, successfully transferring EHB between fungi representing different classes. Finally, we manipulate conditions to optimize reintroduction in a focal EHB-fungal association. We show that EHB infections were initiated and maintained more often under low-nutrient culture conditions and when EHB and fungal hyphae were washed with MgCl2 prior to reassociation. Our study provides new methods for experimental assessment of the effects of EHB on fungal phenotypes and shows how the identity of the fungal host and growth conditions can define the establishment of these widespread and important symbioses.


Subject(s)
Ascomycota , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/physiology , Hyphae , Symbiosis , Plant Leaves
20.
mBio ; 6(4): e00452, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26265717

ABSTRACT

UNLABELLED: Competition between microbes is widespread in nature, especially among those that are closely related. To combat competitors, bacteria have evolved numerous protein-based systems (bacteriocins) that kill strains closely related to the producer. In characterizing the bacteriocin complement and killing spectra for the model strain Pseudomonas syringae B728a, we discovered that its activity was not linked to any predicted bacteriocin but is derived from a prophage. Instead of encoding an active prophage, this region encodes a bacteriophage-derived bacteriocin, termed an R-type syringacin. This R-type syringacin is striking in its convergence with the well-studied R-type pyocin of P. aeruginosa in both genomic location and molecular function. Genomic alignment, amino acid percent sequence identity, and phylogenetic inference all support a scenario where the R-type syringacin has been co-opted independently of the R-type pyocin. Moreover, the presence of this region is conserved among several other Pseudomonas species and thus is likely important for intermicrobial interactions throughout this important genus. IMPORTANCE: Evolutionary innovation is often achieved through modification of complexes or processes for alternate purposes, termed co-option. Notable examples include the co-option of a structure functioning in locomotion (bacterial flagellum) to one functioning in protein secretion (type three secretion system). Similar co-options can occur independently in distinct lineages. We discovered a genomic region in the plant pathogen Pseudomonas syringae that consists of a fragment of a bacteriophage genome. The fragment encodes only the tail of the bacteriophage, which is lethal toward strains of this species. This structure is similar to a previously described structure produced by the related species Pseudomonas aeruginosa. The two structures, however, are not derived from the same evolutionary event. Thus, they represent independent bacteriophage co-options. The co-opted bacteriophage from P. syringae is found in the genomes of many other Pseudomonas species, suggesting ecological importance across this genus.


Subject(s)
Antibiosis , Bacteriocins/genetics , Bacteriocins/metabolism , Pseudomonas Phages/genetics , Pseudomonas syringae/physiology , Pseudomonas syringae/virology , Phylogeny , Pseudomonas aeruginosa/genetics , Pseudomonas syringae/genetics , Pseudomonas syringae/growth & development , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...