Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 11(4): e1005081, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25835388

ABSTRACT

Clonal polymorphism mainly results from somatic mutations that occur naturally during plant growth. In grapevine, arrays of clones have been selected within varieties as a valuable source of diversity, among them clones showing berry color polymorphism. To identify mutations responsible for this color polymorphism, we studied a collection of 33 clones of Pinot noir, Pinot gris, and Pinot blanc. Haplotypes of the L2 cell layer of nine clones were resolved by genotyping self-progenies with molecular markers along a 10.07 Mb region of chromosome 2, including the color locus. We demonstrated that at least six haplotypes could account for the loss of anthocyanin biosynthesis. Four of them resulted from the replacement of sections of the 'colored' haplotype, sized from 31 kb to 4.4 Mb, by the homologous sections of the 'white' haplotype mutated at the color locus. This transfer of information between the two homologous sequences resulted in the partial homozygosity of chromosome 2, associated in one case with a large deletion of 108 kb-long. Moreover, we showed that, in most cases, somatic mutations do not affect the whole plant; instead, they affect only one cell layer, leading to periclinal chimeras associating two genotypes. Analysis of bud sports of Pinot gris support the hypothesis that cell layer rearrangements in the chimera lead to the homogenization of the genotype in the whole plant. Our findings shed new light on the way molecular and cellular mechanisms shape the grapevine genotypes during vegetative propagation, and enable us to propose a scheme of evolutionary mechanism of the Pinot clones.


Subject(s)
Chromosome Deletion , Chromosomes, Plant/genetics , Clonal Evolution , Pigmentation/genetics , Polymorphism, Genetic , Vitis/genetics , Fruit/metabolism , Vitis/metabolism
2.
Theor Appl Genet ; 120(6): 1219-31, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20062965

ABSTRACT

The process of vegetative propagation used to multiply grapevine varieties produces, in most cases, clones genetically identical to the parental plant. Nevertheless, spontaneous somatic mutations can occur in the regenerative cells that give rise to the clones, leading to consider varieties as populations of clones that conform to a panel of phenotypic traits. Using two sets of nuclear microsatellite markers, the present work aimed at evaluating and comparing the intravarietal genetic diversity within seven wine grape varieties: Cabernet franc, Cabernet Sauvignon, Chenin blanc, Grolleau, Pinot noir, Riesling, Savagnin, comprising a total number of 344 accessions of certified clones and introductions preserved in French repositories. Ten accessions resulted in being either self-progeny, possible offspring of the expected variety or misclassified varieties. Out of the 334 remaining accessions, 83 displayed genotypes different from the varietal reference, i.e., the microsatellite profile shared by the larger number of accessions. They showed a similarity value ranging from 0.923 to 0.992, and thus were considered as polymorphic monozygotic clones. The fraction of polymorphic clones ranged from 2 to 75% depending on the variety and the set of markers, the widest clonal diversity being observed within the Savagnin. Among the 83 polymorphic clones, 29 had unique genotype making them distinguishable; others were classified in 21 groups sharing the same genotype. All microsatellite markers were not equally efficient to show diversity within clone collections and a standard set of five microsatellite markers (VMC3a9, VMC5g7, VVS2, VVMD30, and VVMD 32) relevant to reveal clonal polymorphism is proposed.


Subject(s)
Genetic Variation , Vitis/classification , Vitis/genetics , Wine/classification , Alleles , France , Genetic Markers , Genotype , Microsatellite Repeats/genetics , Phylogeny , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...