Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Chromosomes Cancer ; 59(7): 396-405, 2020 07.
Article in English | MEDLINE | ID: mdl-32170980

ABSTRACT

The karyotype of bone-marrow cells at the time of diagnosis is one of the most important prognostic factors in patients with myelodysplastic syndromes (MDS). In some cases, the acquisition of additional genetic aberrations (clonal evolution [CE]) associated with clinical progression may occur during the disease. We analyzed a cohort of 469 MDS patients using a combination of molecular cytogenomic methods to identify cryptic aberrations and to assess their potential role in CE. We confirmed CE in 36 (8%) patients. The analysis of bone-marrow samples with a combination of cytogenomic methods at diagnosis and after CE identified 214 chromosomal aberrations. The early genetic changes in the diagnostic samples were frequently MDS specific (17 MDS-specific/57 early changes). Most progression-related aberrations identified after CE were not MDS specific (131 non-MDS-specific/155 progression-related changes). Copy number neutral loss of heterozygosity (CN-LOH) was detected in 19% of patients. MDS-specific CN-LOH (4q, 17p) was identified in three patients, and probably pathogenic homozygous mutations were found in TET2 (4q24) and TP53 (17p13.1) genes. We observed a statistically significant difference in overall survival (OS) between the groups of patients divided according to their diagnostic cytogenomic findings, with worse OS in the group with complex karyotypes (P = .021). A combination of cytogenomic methods allowed us to detect many cryptic genomic changes and identify genes and genomic regions that may represent therapeutic targets in patients with progressive MDS.


Subject(s)
Clonal Evolution , Myelodysplastic Syndromes/genetics , Adult , Aged , Aged, 80 and over , Chromosome Aberrations , DNA-Binding Proteins/genetics , Dioxygenases , Female , Humans , Loss of Heterozygosity , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/classification , Myelodysplastic Syndromes/pathology , Prognosis , Proto-Oncogene Proteins/genetics , Survival Analysis , Tumor Suppressor Protein p53/genetics
2.
Leuk Res ; 68: 85-89, 2018 05.
Article in English | MEDLINE | ID: mdl-29574397

ABSTRACT

Dicentric chromosomes (DCs) are considered markers of cancer in various malignancies. However, they can be overlooked when conventional analysis or multicolor fluorescence in situ hybridization (mFISH) is used to detect complex karyotypes. We analyzed the karyotypes of 114 patients with acute myeloid leukemia (AML) and complex karyotypes and verified the presence of monosomies by FISH using multi-centromeric probes. Monosomy was detected in 63% of patients by G-banding/mFISH and confirmed in 55% of patients by centromeric FISH. FISH analysis indicated a high frequency of DCs that were previously considered monosomies. In some cases, it was apparent that the derivative monocentric chromosome was a primary DC. DCs were formed mostly by chromosomes 17 and 20. In conclusion, chromosome loss and unbalanced translocation suggest the presence of a hidden DC or its previous existence. DCs undergo several stabilizing changes and can induce other chromosomal aberrations and/or the formation of new DCs. This can result in the clonal evolution of abnormal cells, which is considered an independent prognostic marker of an unfavorable disease course and short survival.


Subject(s)
Centromere , Chromosome Aberrations , In Situ Hybridization, Fluorescence/methods , Karyotype , Leukemia, Myeloid, Acute/genetics , Aged , Chromosome Banding , Chromosomes, Human, Pair 17 , Chromosomes, Human, Pair 20 , Female , Humans , Male , Middle Aged , Monosomy , Prognosis , Survival Analysis
3.
Comp Cytogenet ; 8(3): 169-83, 2014.
Article in English | MEDLINE | ID: mdl-25349669

ABSTRACT

A comparative cytogenetic analysis was carried out in five species of a monophyletic clade of neotropical Cichlasomatine cichlids, namely Cleithracara maronii Steindachner, 1881, Ivanacara adoketa (Kullander & Prada-Pedreros, 1993), Nannacara anomala Regan, 1905, N. aureocephalus Allgayer, 1983 and N. taenia Regan, 1912. Karyotypes and other chromosomal characteristics were revealed by CDD banding and mapped onto the phylogenetic hypothesis based on molecular analyses of four genes, namely cyt b, 16S rRNA, S7 and RAG1. The diploid numbers of chromosomes ranged from 44 to 50, karyotypes were composed predominantly of monoarmed chromosomes and one to three pairs of CMA3 signal were observed. The results showed evolutionary reduction in this monophyletic clade and the cytogenetic mechanisms (fissions/fusions) were hypothesized and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...