Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sustain Sci ; : 1-16, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-37363302

ABSTRACT

Coping with surprise and uncertainty resulting from the emergence of undesired and unexpected novelty or the sudden reorganization of systems at multiple spatiotemporal scales requires both a scientific process that can incorporate diverse expertise and viewpoints, and a scientific framework that can account for the structure and dynamics of interacting social-ecological systems (SES) and the inherent uncertainty of what might emerge in the future. We argue that combining a convergence scientific process with a panarchy framework provides a pathway for improving our understanding of, and response to, emergence. Emergent phenomena are often unexpected (e.g., pandemics, regime shifts) and can be highly disruptive, so can pose a significant challenge to the development of sustainable and resilient SES. Convergence science is a new approach promoted by the U.S. National Science Foundation for tackling complex problems confronting humanity through the integration of multiple perspectives, expertise, methods, tools, and analytical approaches. Panarchy theory is a framework useful for studying emergence, because it characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It accounts for the fundamental tenets of complex systems and explicitly grapples with emergence, including the emergence of novelty, and the emergent property of social-ecological resilience. We provide an overview of panarchy, convergence science, and emergence. We discuss the significant data and methodological challenges of using panarchy in a convergence approach to address emergent phenomena, as well as state-of-the-art methods for overcoming them. We present two examples that would benefit from such an approach: climate change and its impacts on social-ecological systems, and the relationships between infectious disease and social-ecological systems.

2.
Sci Rep ; 10(1): 4136, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139800

ABSTRACT

Tipping point dynamics are fundamental drivers for sustainable transition pathways of social-ecological systems (SES). Current research predominantly analyzes how crossing tipping points causes regime shifts, however, the analysis of potential transition pathways from these social and ecological tipping points is often overlooked. In this paper, we analyze transition pathways and the potential outcomes that these may lead to via a stylized model of a system composed of interacting agents exploiting resources and, by extension, the overall ecosystem. Interactions between the social and the ecological system are based on a perception-exploitation framework. We show that the presence of tipping points in SES may yield counter-intuitive social-ecological transition pathways. For example, the high perception of an alarming ecological state among agents can provide short-term ecological benefits, but can be less effective in the long term, compared to a low-perception condition. This work also highlights how understanding non-linear interactions is critical for defining suitable transition pathways of any SES.

3.
Ambio ; 48(10): 1099-1115, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30623361

ABSTRACT

This paper synthesizes current knowledge on the impacts of the Gibe III dam and associated large-scale commercial farming in the Omo-Turkana Basin, based on an expert elicitation coupled with a scoping review and the collective knowledge of an multidisciplinary network of researchers with active data-collection programs in the Basin. We use social-ecological systems and political ecology frameworks to assess the impacts of these interventions on hydrology and ecosystem services in the Basin, and cascading effects on livelihoods, patterns of migration, and conflict dynamics for the people of the region. A landscape-scale transformation is occurring in which commodities, rather than staple foods for local consumption, are becoming the main output of the region. Mitigation measures initiated by the Ethiopian government-notably resettlement schemes-are not adequately buffering affected communities from food insecurity following disruption to indigenous livelihood systems. Therefore, while benefits are accruing to labor migrants, the costs of development are currently borne primarily by the agro-pastoralist indigenous people of the region. We consider measures that might maximize benefits from the changes underway and mitigate their negative outcomes, such as controlled floods, irrigating fodder crops, food aid, and benefit sharing.


Subject(s)
Ecology , Ecosystem , Agriculture , Floods , Humans , Social Change
4.
J Environ Manage ; 183(Pt 2): 379-388, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27349502

ABSTRACT

The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase resilience at multiple scales.


Subject(s)
Agriculture/methods , Conservation of Natural Resources/methods , Animals , Ecosystem , Edible Grain , Food Supply , Herbivory , Systems Analysis , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...