Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(6): 2383-2400, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28230986

ABSTRACT

Herein we describe the design, synthesis, and evaluation of a novel series of oxadiazine-based gamma secretase modulators obtained via isosteric amide replacement and critical consideration of conformational restriction. Oxadiazine lead 47 possesses good in vitro potency with excellent predicted CNS drug-like properties and desirable ADME/PK profile. This lead compound demonstrated robust Aß42 reductions and subsequent Aß37 increases in both rodent brain and CSF at 30 mg/kg dosed orally.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Drug Design , Oxazines/chemistry , Oxazines/pharmacology , Peptide Fragments/antagonists & inhibitors , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cell Line , Humans , Macaca fascicularis , Mice , Oxazines/pharmacokinetics , Peptide Fragments/metabolism , Rats, Wistar
2.
Alzheimers Res Ther ; 8: 34, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27572246

ABSTRACT

BACKGROUND: Familial Alzheimer's disease (FAD) is caused by mutations in the amyloid precursor protein (APP) or presenilin (PS). Most PS mutations, which account for the majority of FAD cases, lead to an increased ratio of longer to shorter forms of the amyloid beta (Aß) peptide. The therapeutic rationale of γ-secretase modulators (GSMs) for Alzheimer's disease is based on this genetic evidence as well as on enzyme kinetics measurements showing changes in the processivity of the γ-secretase complex. This analysis suggests that GSMs could potentially offset some of the effects of PS mutations on APP processing, thereby addressing the root cause of early onset FAD. Unfortunately, the field has generated few, if any, molecules with good central nervous system (CNS) drug-like properties to enable proof-of-mechanism studies. METHOD: We characterized the novel GSM FRM-36143 using multiple cellular assays to determine its in vitro potency and off-target activity as well as its potential to reverse the effect of PS mutations. We also tested its efficacy in vivo in wild-type mice and rats. RESULTS: FRM-36143 has much improved CNS drug-like properties compared to published GSMs. It has an in vitro EC50 for Aß42 of 35 nM in H4 cells, can reduce Aß42 to 58 % of the baseline in rat cerebrospinal fluid, and also increases the non-amyloidogenic peptides Aß37 and Aß38. It does not inhibit Notch processing, nor does it inhibit 24-dehydrocholesterol reductase (DHCR24) activity. Most interestingly, it can reverse the effects of presenilin mutations on APP processing in vitro. CONCLUSIONS: FRM-36143 possesses all the characteristics of a GSM in terms of Aß modulation Because FRM-36143 was able to reverse the effect of PS mutations, we suggest that targeting patients with this genetic defect would be the best approach at testing the efficacy of a GSM in the clinic. While the amyloid hypothesis is still being tested with ß-site APP-cleaving enzyme inhibitors and monoclonal antibodies in sporadic AD, we believe it is not a hypothesis for FAD. Since GSMs can correct the molecular defect caused by PS mutations, they have the promise to provide benefits to the patients when treated early enough in the course of the disease.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Nootropic Agents/therapeutic use , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , HEK293 Cells , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/toxicity , Humans , Male , Mice , Mice, 129 Strain , Mutation , Neocortex/drug effects , Neocortex/metabolism , Nootropic Agents/pharmacokinetics , Nootropic Agents/toxicity , Presenilin-1/genetics , Presenilin-1/metabolism , Rats, Wistar
3.
J Med Entomol ; 51(2): 450-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24724296

ABSTRACT

The study examines the extent and frequency of a knockdown-type resistance allele (kdr type) in North American populations of human head lice. Lice were collected from 32 locations in Canada and the United States. DNA was extracted from individual lice and used to determine their zygosity using the serial invasive signal amplification technique to detect the kdr-type T917I (TI) mutation, which is most responsible for nerve insensitivity that results in the kdr phenotype and permethrin resistance. Previously sampled sites were resampled to determine if the frequency of the TI mutation was changing. The TI frequency was also reevaluated using a quantitative sequencing method on pooled DNA samples from selected sites to validate this population genotyping method. Genotyping substantiated that TI occurs at high levels in North American lice (88.4%). Overall, the TI frequency in U.S. lice was 84.4% from 1999 to 2009, increased to 99.6% from 2007 to 2009, and was 97.1% in Canadian lice in 2008. Genotyping results using the serial invasive signal amplification reaction (99.54%) and quantitative sequencing (99.45%) techniques were highly correlated. Thus, the frequencies of TI in North American head louse populations were found to be uniformly high, which may be due to the high selection pressure from the intensive and widespread use of the pyrethrins- or pyrethroid-based pediculicides over many years, and is likely a main cause of increased pediculosis and failure of pyrethrins- or permethrin-based products in Canada and the United States. Alternative approaches to treatment of head lice infestations are critically needed.


Subject(s)
Insecticides , Pediculus/genetics , Permethrin , Sodium Channels/genetics , Animals , Canada , Gene Frequency , Genotyping Techniques , Insecticide Resistance/genetics , Mutation , United States
4.
Pest Manag Sci ; 66(9): 1031-40, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20564731

ABSTRACT

BACKGROUND: Pediculosis is the most prevalent parasitic infestation of humans. Resistance to pyrethrin- and pyrethroid-based pediculicides is due to knockdown (kdr)-type point mutations in the voltage-sensitive sodium channel alpha-subunit gene. Early detection of resistance is crucial for the selection of effective management strategies. RESULTS: Kdr allele frequencies of lice from 14 countries were determined using the serial invasive signal amplification reaction. Lice collected from Uruguay, the United Kingdom and Australia had kdr allele frequencies of 100%, while lice from Ecuador, Papua New Guinea, South Korea and Thailand had kdr allele frequencies of 0%. The remaining seven countries investigated, including seven US populations, two Argentinian populations and populations from Brazil, Denmark, Czech Republic, Egypt and Israel, displayed variable kdr allele frequencies, ranging from 11 to 97%. CONCLUSION: The newly developed and validated SISAR method is suitable for accurate monitoring of kdr allele frequencies in head lice. Proactive management is needed where kdr-type resistance is not yet saturated. Based on sodium channel insensitivity and its occurrence in louse populations resistant to pyrethrin- and pyrethroid-based pediculicides, the T917I mutation appears to be a key marker for resistance. Results from the Egyptian population, however, indicate that phenotypic resistance of lice with single or double mutations (M815I and/or L920F) should also be determined.


Subject(s)
DNA Mutational Analysis/methods , Drug Resistance/genetics , Gene Frequency , Nucleic Acid Amplification Techniques/methods , Pediculus/genetics , Point Mutation , Animals , Base Sequence , Genome, Insect/genetics , Internationality , Molecular Sequence Data , Pediculus/drug effects , Polymerase Chain Reaction , Reproducibility of Results , Sodium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...