Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 399: 130610, 2024 May.
Article in English | MEDLINE | ID: mdl-38508284

ABSTRACT

Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.


Subject(s)
Ionic Liquids , Lignin , Lignin/chemistry , Zea mays/chemistry , Sodium Hydroxide , Solvents , Ethanol/chemistry , Acids , Hydrolysis
2.
J Agric Food Chem ; 71(1): 592-602, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36562625

ABSTRACT

Corn stover was subjected to dilute sulfuric acid pretreatment to assess the impact of pretreatment conditions on lignin extractability, properties, and utility as a phenol replacement in wood phenol-formaldehyde (PF) adhesives. It was identified that both formic acid and NaOH could extract and recover 60-70% of the lignin remaining after pretreatment and enzymatic hydrolysis under the mildest pretreatment conditions while simultaneously achieving reasonable enzymatic hydrolysis yields (>60%). The availability of reaction sites for the incorporation of lignins into the PF polymer matrix (i.e., unsubstituted phenolic hydroxyl groups) was shown to be strongly impacted by the pretreatment time and the recovery. Finally, a lignin-based wood adhesive was formulated by replacing 100% of the phenol with formic-acid-extracted lignin, which exhibited a dry shear strength exceeding a conventional PF adhesive. These findings suggest that both pretreatment and lignin extraction conditions can be tailored to yield lignins with properties targeted for this co-product application.


Subject(s)
Lignin , Phenol , Adhesives , Wood , Phenols , Acids , Formaldehyde , Hydrolysis
3.
Biotechnol Biofuels Bioprod ; 15(1): 45, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35509012

ABSTRACT

BACKGROUND: A lignocellulose-to-biofuel biorefinery process that enables multiple product streams is recognized as a promising strategy to improve the economics of this biorefinery and to accelerate technology commercialization. We recently identified an innovative pretreatment technology that enables of the production of sugars at high yields while simultaneously generating a high-quality lignin stream that has been demonstrated as both a promising renewable polyol replacement for polyurethane applications and is highly susceptible to depolymerization into monomers. This technology comprises a two-stage pretreatment approach that includes an alkaline pre-extraction followed by a metal-catalyzed alkaline-oxidative pretreatment. Our recent work demonstrated that H2O2 and O2 act synergistically as co-oxidants during the alkaline-oxidative pretreatment and could significantly reduce the pretreatment chemical input while maintaining high sugar yields (~ 95% glucose and ~ 100% xylose of initial sugar composition), high lignin yields (~ 75% of initial lignin), and improvements in lignin usage. RESULTS: This study considers the economic impact of these advances and provides strategies that could lead to additional economic improvements for future commercialization. The results of the technoeconomic analysis (TEA) demonstrated that adding O2 as a co-oxidant at 50 psig for the alkaline-oxidative pretreatment and reducing the raw material input reduced the minimum fuel selling price from $1.08/L to $0.85/L, assuming recoverable lignin is used as a polyol replacement. If additional lignin can be recovered and sold as more valuable monomers, the minimum fuel selling price (MFSP) can be further reduced to $0.73/L. CONCLUSIONS: The present work demonstrated that high sugar and lignin yields combined with low raw material inputs and increasing the value of lignin could greatly increase the economic viability of a poplar-based biorefinery. Continued research on integrating sugar production with lignin valorization is thus warranted to confirm this economic potential as the technology matures.

4.
Front Plant Sci ; 12: 737690, 2021.
Article in English | MEDLINE | ID: mdl-34630488

ABSTRACT

Plant biomass represents an abundant and increasingly important natural resource and it mainly consists of a number of cell types that have undergone extensive secondary cell wall (SCW) formation. These cell types are abundant in the stems of Arabidopsis, a well-studied model system for hardwood, the wood of eudicot plants. The main constituents of hardwood include cellulose, lignin, and xylan, the latter in the form of glucuronoxylan (GX). The binding of GX to cellulose in the eudicot SCW represents one of the best-understood molecular interactions within plant cell walls. The evenly spaced acetylation and 4-O-methyl glucuronic acid (MeGlcA) substitutions of the xylan polymer backbone facilitates binding in a linear two-fold screw conformation to the hydrophilic side of cellulose and signifies a high level of molecular specificity. However, the wider implications of GX-cellulose interactions for cellulose network formation and SCW architecture have remained less explored. In this study, we seek to expand our knowledge on this by characterizing the cellulose microfibril organization in three well-characterized GX mutants. The selected mutants display a range of GX deficiency from mild to severe, with findings indicating even the weakest mutant having significant perturbations of the cellulose network, as visualized by both scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show by image analysis that microfibril width is increased by as much as three times in the severe mutants compared to the wild type and that the degree of directional dispersion of the fibrils is approximately doubled in all the three mutants. Further, we find that these changes correlate with both altered nanomechanical properties of the SCW, as observed by AFM, and with increases in enzymatic hydrolysis. Results from this study indicate the critical role that normal GX composition has on cellulose bundle formation and cellulose organization as a whole within the SCWs.

5.
Nat Commun ; 12(1): 3912, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162838

ABSTRACT

Biological lignin valorization has emerged as a major solution for sustainable and cost-effective biorefineries. However, current biorefineries yield lignin with inadequate fractionation for bioconversion, yet substantial changes of these biorefinery designs to focus on lignin could jeopardize carbohydrate efficiency and increase capital costs. We resolve the dilemma by designing 'plug-in processes of lignin' with the integration of leading pretreatment technologies. Substantial improvement of lignin bioconversion and synergistic enhancement of carbohydrate processing are achieved by solubilizing lignin via lowering molecular weight and increasing hydrophilic groups, addressing the dilemma of lignin- or carbohydrate-first scenarios. The plug-in processes of lignin could enable minimum polyhydroxyalkanoate selling price at as low as $6.18/kg. The results highlight the potential to achieve commercial production of polyhydroxyalkanoates as a co-product of cellulosic ethanol. Here, we show that the plug-in processes of lignin could transform biorefinery design toward sustainability by promoting carbon efficiency and optimizing the total capital cost.


Subject(s)
Carbon/metabolism , Lignin/metabolism , Polyhydroxyalkanoates/metabolism , Bioengineering/economics , Bioengineering/methods , Carbohydrates/chemistry , Hydrolysis , Industrial Microbiology/economics , Industrial Microbiology/methods , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
6.
Bioresour Technol ; 316: 123907, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32739581

ABSTRACT

The impact of catalyst choice and reaction conditions during catalytic hydrogenolysis of silver birch biomass are assessed for their effect on aromatic monomer yields and selectivities, lignin removal, and sugar yields from enzymatic hydrolysis. At a reaction temperature of 220 °C with no supplemental H2, it was demonstrated that both Co/C and Ni/C exhibited aromatic monomer yields of >50%, which were close to the theoretical maximum expected for the lignin based on total ß-O-4 content and exhibited high selectivities for 4-propylguaiacol and 4-propylsyringol. Pd/C exhibited a significantly different set of products, and using a model lignin dimer, showed a product profile that shifted upon inclusion of supplemental H2, suggesting that the generation of surface hydrogen is critical for this catalyst system. Lignin removal during hydrogenolysis could be correlated to glucose yields and inclusion of lignin depolymerizing catalysts significantly improves lignin removal and subsequent enzymatic hydrolysis yields.


Subject(s)
Lignin , Wood , Betula , Catalysis , Sugars
7.
Bioresour Technol ; 314: 123750, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32622284

ABSTRACT

Prior work has identified that lignins recovered from dilute acid-pretreated corn stover exhibit superior performance in phenol-formaldehyde resins used in wood adhesive applications when compared to diverse process-modified lignins derived from other sources. This improved performance is hypothesized to be due to the higher content of unsubstituted phenolic groups specifically p-coumarate lignin esters. In this work, a diverse set of corn stover samples are employed that exhibit diversity in p-coumarate content and total lignin content to explore the relationship between dilute acid pretreatment conditions, p-coumarate ester hydrolysis, xylan solubilization, and the resulting glucose enzymatic hydrolysis yields. The goal of this study is to identify pretreatment conditions that preserve a significant fraction of the p-coumarate esters while simultaneously achieving high enzymatic hydrolysis yields. Kinetic parameters for p-coumarate ester hydrolysis were quantified and pretreatment-biomass combinations were identified that result in glucose hydrolysis yields of more than 90% while retaining nearly 50 mg p-coumarate/g lignin.


Subject(s)
Lignin , Zea mays , Acids , Biomass , Hydrolysis
8.
Biotechnol Biofuels ; 12: 213, 2019.
Article in English | MEDLINE | ID: mdl-31516552

ABSTRACT

BACKGROUND: In this work, three pretreatments under investigation at the DOE Bioenergy Research Centers (BRCs) were subjected to a side-by-side comparison to assess their performance on model bioenergy hardwoods (a eucalyptus and a hybrid poplar). These include co-solvent-enhanced lignocellulosic fractionation (CELF), pretreatment with an ionic liquid using potentially biomass-derived components (cholinium lysinate or [Ch][Lys]), and two-stage Cu-catalyzed alkaline hydrogen peroxide pretreatment (Cu-AHP). For each of the feedstocks, the pretreatments were assessed for their impact on lignin and xylan solubilization and enzymatic hydrolysis yields as a function of enzyme loading. Lignins recovered from the pretreatments were characterized for polysaccharide content, molar mass distributions, ß-aryl ether content, and response to depolymerization by thioacidolysis. RESULTS: All three pretreatments resulted in significant solubilization of lignin and xylan, with the CELF pretreatment solubilizing the majority of both biopolymer categories. Enzymatic hydrolysis yields were shown to exhibit a strong, positive correlation with the lignin solubilized for the low enzyme loadings. The pretreatment-derived solubles in the [Ch][Lys]-pretreated biomass were presumed to contribute to inhibition of enzymatic hydrolysis in the eucalyptus as a substantial fraction of the pretreatment liquor was carried forward into hydrolysis for this pretreatment. The pretreatment-solubilized lignins exhibited significant differences in polysaccharide content, molar mass distributions, aromatic monomer yield by thioacidolysis, and ß-aryl ether content. Key trends include a substantially higher polysaccharide content in the lignins recovered from the [Ch][Lys] pretreatment and high ß-aryl ether contents and aromatic monomer yields from the Cu-AHP pretreatment. For all lignins, the 13C NMR-determined ß-aryl ether content was shown to be correlated with the monomer yield with a second-order functionality. CONCLUSIONS: Overall, it was demonstrated that the three pretreatments highlighted in this study demonstrated uniquely different functionalities in reducing biomass recalcitrance and achieving higher enzymatic hydrolysis yields for the hybrid poplar while yielding a lignin-rich stream that may be suitable for valorization. Furthermore, modification of lignin during pretreatment, particularly cleavage of ß-aryl ether bonds, is shown to be detrimental to subsequent depolymerization.

9.
Polymers (Basel) ; 11(7)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323816

ABSTRACT

Polyurethane chemistry can yield diverse sets of polymeric materials exhibiting a wide range of properties for various applications and market segments. Utilizing lignin as a polyol presents an opportunity to incorporate a currently underutilized renewable aromatic polymer into these products. In this work, we will review the current state of technology for utilizing lignin as a polyol replacement in different polyurethane products. This will include a discussion of lignin structure, diversity, and modification during chemical pulping and cellulosic biofuels processes, approaches for lignin extraction, recovery, fractionation, and modification/functionalization. We will discuss the potential of incorporation of lignins into polyurethane products that include rigid and flexible foams, adhesives, coatings, and elastomers. Finally, we will discuss challenges in incorporating lignin in polyurethane formulations, potential solutions and approaches that have been taken to resolve those issues.

10.
Methods Mol Biol ; 1995: 173-182, 2019.
Article in English | MEDLINE | ID: mdl-31148129

ABSTRACT

This chapter describes methods for generation of hydrolysates amenable to conversion to microbial lipids from herbaceous lignocellulosic biomass utilizing either mild alkali pretreatment with NaOH or alkaline hydrogen peroxide pretreatment with NaOH and H2O2. This pretreatment is followed by enzymatic hydrolysis of the plant cell wall polysaccharides to yield hydrolysates. These hydrolysates are composed primarily of the monosaccharides glucose and xylose as well as acetate and phenolic monomers that may all serve as a source of renewable carbon to produce microbial lipids. Application of these mild pretreatment conditions minimizes the generation of inhibitors, enabling microbial cultivations to often be performed without the need for detoxification.


Subject(s)
Cell Wall/metabolism , Hydrogen Peroxide/metabolism , Lignin/metabolism , Plants/metabolism , Sodium Hydroxide/metabolism , Acetic Acid/metabolism , Biomass , Glucose/metabolism , Hydrolysis , Industrial Microbiology , Phenols/metabolism , Xylose/metabolism
11.
J Ind Microbiol Biotechnol ; 45(9): 795-801, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29915996

ABSTRACT

Livestock and fish farming are rapidly growing industries facing the simultaneous pressure of increasing production demands and limited protein required to produce feed. Bacteria that can convert low-value non-food waste streams into singe cell protein (SCP) present an intriguing route for rapid protein production. The oleaginous bacterium Rhodococcus opacus serves as a model organism for understanding microbial lipid production. SCP production has not been explored using an organism from this genus. In the present research, R. opacus strains DSM 1069 and PD630 were fed three agro-waste streams: (1) orange pulp, juice, and peel; (2) lemon pulp, juice, and peel; and (3) corn stover effluent, to determine if these low-cost substrates would be suitable for producing a value-added product, SCP for aquafarming or livestock feed. Both strains used agro-waste carbon sources as a growth substrate to produce protein-rich cell biomass suggesting that that R. opacus can be used to produce SCP using agro-wastes as low-cost substrates.


Subject(s)
Dietary Proteins/metabolism , Rhodococcus/metabolism , Biomass , Crops, Agricultural/chemistry , Fermentation
12.
Biotechnol Biofuels ; 11: 143, 2018.
Article in English | MEDLINE | ID: mdl-29796084

ABSTRACT

BACKGROUND: When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H2O2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. RESULTS: After Cu-AHP pretreatment of 120 °C NaOH-H2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H2O2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H2O pre-extraction has the lowest installed ($246 million) and raw material ($175 million) costs compared to the other process configurations. CONCLUSIONS: We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H2O pre-extraction.

13.
J Agric Food Chem ; 65(39): 8652-8662, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28876068

ABSTRACT

Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.


Subject(s)
Cell Wall/chemistry , Cell Wall/drug effects , Zea mays/ultrastructure , Cell Wall/metabolism , Cellulase/metabolism , Glucose/metabolism , Hot Temperature , Hydrogen Peroxide/pharmacology , Hydrogen-Ion Concentration , Hydrolysis , Lignin/chemistry , Polysaccharides/metabolism , Porosity , Water/metabolism
14.
Bioresour Technol ; 245(Pt A): 242-249, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28892697

ABSTRACT

This work investigated the impact of two alkaline pretreatments, ammonia fiber expansion (AFEX) and alkaline hydrogen peroxide (AHP) delignification performed over a range of conditions on the properties of corn stover and switchgrass. Changes in feedstock properties resulting from pretreatment were subsequently compared to enzymatic hydrolysis yields to examine the relationship between enzymatic hydrolysis and cell wall properties. The pretreatments function to increase enzymatic hydrolysis yields through different mechanisms; AFEX pretreatment through lignin relocalization and some xylan solubilization and AHP primarily through lignin solubilization. An important outcome of this work demonstrated that while changes in lignin content in AHP-delignified biomass could be clearly correlated to improved response to hydrolysis, compositional changes alone in AFEX-pretreated biomass could not explain differences in hydrolysis yields. We determined the water retention value, which characterizes the association of water with the cell wall of the pretreated biomass, can be used to predict hydrolysis yields for all pretreated biomass within this study.


Subject(s)
Biomass , Poaceae , Hydrolysis , Lignin , Water , Zea mays
15.
Biotechnol Biofuels ; 10: 184, 2017.
Article in English | MEDLINE | ID: mdl-28725264

ABSTRACT

BACKGROUND: Heterogeneity within herbaceous biomass can present important challenges for processing feedstocks to cellulosic biofuels. Alterations to cell wall composition and organization during plant growth represent major contributions to heterogeneity within a single species or cultivar. To address this challenge, the focus of this study was to characterize the relationship between composition and properties of the plant cell wall and cell wall response to deconstruction by NaOH pretreatment and enzymatic hydrolysis for anatomical fractions (stem internodes, leaf sheaths, and leaf blades) within switchgrass at various tissue maturities as assessed by differing internode. RESULTS: Substantial differences in both cell wall composition and response to deconstruction were observed as a function of anatomical fraction and tissue maturity. Notably, lignin content increased with tissue maturity concurrently with decreasing ferulate content across all three anatomical fractions. Stem internodes exhibited the highest lignin content as well as the lowest hydrolysis yields, which were inversely correlated to lignin content. Confocal microscopy was used to demonstrate that removal of cell wall aromatics (i.e., lignins and hydroxycinnamates) by NaOH pretreatment was non-uniform across diverse cell types. Non-cellulosic polysaccharides were linked to differences in cell wall response to deconstruction in lower lignin fractions. Specifically, leaf sheath and leaf blade were found to have higher contents of substituted glucuronoarabinoxylans and pectic polysaccharides. Glycome profiling demonstrated that xylan and pectic polysaccharide extractability varied with stem internode maturity, with more mature internodes requiring harsher chemical extractions to remove comparable glycan abundances relative to less mature internodes. While enzymatic hydrolysis was performed on extractives-free biomass, extractible sugars (i.e., starch and sucrose) comprised a significant portion of total dry weight particularly in stem internodes, and may provide an opportunity for recovery during processing. CONCLUSIONS: Cell wall structural differences within a single plant can play a significant role in feedstock properties and have the potential to be exploited for improving biomass processability during a biorefining process. The results from this work demonstrate that cell wall lignin content, while generally exhibiting a negative correlation with enzymatic hydrolysis yields, is not the sole contributor to cell wall recalcitrance across diverse anatomical fractions within switchgrass.

16.
Bioresour Technol ; 226: 9-17, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27951509

ABSTRACT

In this work, corn stover subjected to ammonia fiber expansion (AFEX™)1 pretreatment or alkaline pre-extraction followed by hydrogen peroxide post-treatment (AHP pretreatment) were compared for their enzymatic hydrolysis yields over a range of solids loadings, enzymes loadings, and enzyme combinations. Process techno-economic models were compared for cellulosic ethanol production for a biorefinery that handles 2000tons per day of corn stover employing a centralized biorefinery approach with AHP or a de-centralized AFEX pretreatment followed by biomass densification feeding a centralized biorefinery. A techno-economic analysis (TEA) of these scenarios shows that the AFEX process resulted in the highest capital investment but also has the lowest minimum ethanol selling price (MESP) at $2.09/gal, primarily due to good energy integration and an efficient ammonia recovery system. The economics of AHP could be made more competitive if oxidant loadings were reduced and the alkali and sugar losses were also decreased.


Subject(s)
Biotechnology/methods , Ethanol/metabolism , Zea mays/chemistry , Ammonia/chemistry , Biomass , Biotechnology/economics , Costs and Cost Analysis , Enzymes/chemistry , Enzymes/metabolism , Ethanol/economics , Hydrogen Peroxide/chemistry , Hydrolysis , Monosaccharides/chemistry , Plant Shoots/chemistry , Plant Shoots/metabolism , Sodium Hydroxide/chemistry , Zea mays/metabolism
17.
Biotechnol Biofuels ; 9: 34, 2016.
Article in English | MEDLINE | ID: mdl-26862348

ABSTRACT

BACKGROUND: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. RESULTS: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. CONCLUSIONS: This study demonstrated that the fed-batch, two-stage Cu-AHP pretreatment process was effective in pretreating hybrid poplar for its conversion into fermentable sugars. Results showed sugar yields near the theoretical maximum were achieved from enzymatically hydrolyzed hybrid poplar by incorporating an alkaline extraction step prior to pretreatment and by efficiently utilizing H2O2 during the Cu-AHP process. Significantly, this study reports high sugar yields from woody biomass treated with an AHP pretreatment under mild reaction conditions.

18.
Biotechnol Biofuels ; 8: 123, 2015.
Article in English | MEDLINE | ID: mdl-26300970

ABSTRACT

BACKGROUND: Alkaline hydrogen peroxide pretreatment catalyzed by Cu(II) 2,2'-bipyridine complexes has previously been determined to substantially improve the enzymatic hydrolysis of woody plants including hybrid poplar as a consequence of moderate delignification. In the present work, cell wall morphological and lignin structural changes were characterized for this pretreatment approach to gain insights into pretreatment outcomes and, specifically, to identify the extent and nature of lignin modification. RESULTS: Through TEM imaging, this catalytic oxidation process was shown to disrupt cell wall layers in hybrid poplar. Cu-containing nanoparticles, primarily in the Cu(I) oxidation state, co-localized with the disrupted regions, providing indirect evidence of catalytic activity whereby soluble Cu(II) complexes are reduced and precipitated during pretreatment. The concentration of alkali-soluble polymeric and oligomeric lignin was substantially higher for the Cu-catalyzed oxidative pretreatment. This alkali-soluble lignin content increased with time during the catalytic oxidation process, although the molecular weight distributions were unaltered. Yields of aromatic monomers (including phenolic acids and aldehydes) were found to be less than 0.2 % (wt/wt) on lignin. Oxidation of the benzylic alcohol in the lignin side-chain was evident in NMR spectra of the solubilized lignin, whereas minimal changes were observed for the pretreatment-insoluble lignin. CONCLUSIONS: These results provide indirect evidence for catalytic activity within the cell wall. The low yields of lignin-derived aromatic monomers, together with the detailed characterization of the pretreatment-soluble and pretreatment-insoluble lignins, indicate that the majority of both lignin pools remained relatively unmodified. As such, the lignins resulting from this process retain features closely resembling native lignins and may, therefore, be amenable to subsequent valorization.

19.
Environ Sci Technol ; 49(14): 8914-22, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26121369

ABSTRACT

Lignocellulosic biomass hydrolysates hold great potential as a feedstock for microbial biofuel production, due to their high concentration of fermentable sugars. Present at lower concentrations are a suite of aromatic compounds that can inhibit fermentation by biofuel-producing microbes. We have developed a microbial-mediated strategy for removing these aromatic compounds, using the purple nonsulfur bacterium Rhodopseudomonas palustris. When grown photoheterotrophically in an anaerobic environment, R. palustris removes most of the aromatics from ammonia fiber expansion (AFEX) treated corn stover hydrolysate (ACSH), while leaving the sugars mostly intact. We show that R. palustris can metabolize a host of aromatic substrates in ACSH that have either been previously described as unable to support growth, such as methoxylated aromatics, and those that have not yet been tested, such as aromatic amides. Removing the aromatics from ACSH with R. palustris, allowed growth of a second microbe that could not grow in the untreated ACSH. By using defined mutants, we show that most of these aromatic compounds are metabolized by the benzoyl-CoA pathway. We also show that loss of enzymes in the benzoyl-CoA pathway prevents total degradation of the aromatics in the hydrolysate, and instead allows for biological transformation of this suite of aromatics into selected aromatic compounds potentially recoverable as an additional bioproduct.


Subject(s)
Hydrocarbons, Aromatic/metabolism , Rhodopseudomonas/metabolism , Waste Products , Zea mays/chemistry , Ammonia/pharmacology , Anaerobiosis/drug effects , Benzoic Acid/chemistry , Biodegradation, Environmental/drug effects , Biomass , Biotransformation/drug effects , Carbohydrates/analysis , Hydrocarbons, Aromatic/chemistry , Hydrolysis , Lignin/metabolism , Mutation , Rhodobacter sphaeroides/drug effects , Rhodobacter sphaeroides/metabolism , Rhodopseudomonas/drug effects , Rhodopseudomonas/growth & development , Zea mays/drug effects
20.
J Exp Bot ; 66(14): 4305-15, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25871649

ABSTRACT

A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment.


Subject(s)
Cell Wall/chemistry , Zea mays/metabolism , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...