Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Tissue Eng Regen Med ; 20(6): 993-1013, 2023 10.
Article in English | MEDLINE | ID: mdl-37515738

ABSTRACT

BACKGROUND: The secretome of adipose-derived mesenchymal stem cells (ASCs) offers a unique approach to understanding and treating wounds, including the critical process of epidermal regeneration orchestrated by keratinocytes. However, 2D culture techniques drastically alter the secretory dynamics of ASCs, which has led to ambiguity in understanding which secreted compounds (e.g., growth factors, exosomes, reactive oxygen species) may be driving epithelialization. METHODS: A novel tissue-mimetic 3D hydrogel system was utilized to enhance the retainment of a more regenerative ASC phenotype and highlight the functional secretome differences between 2D and 3D. Subsequently, the ASC-secretome was stratified by molecular weight and the presence/absence of extracellular vesicles (EVs). The ASC-secretome fractions were then evaluated to assess for the capacity to augment specific keratinocyte activities. RESULTS: Culture of ASCs within the tissue-mimetic system enhanced protein secretion ~ 50%, exclusively coming from the > 100 kDa fraction. The ASC-secretome ability to modulate epithelialization functions, including migration, proliferation, differentiation, and morphology, resided within the "> 100 kDa" fraction, with the 3D ASC-secretome providing the greatest improvement. 3D ASC EV secretion was enhanced two-fold and exhibited dose-dependent effects on epidermal regeneration. Notably, ASC-EVs induced morphological changes in keratinocytes reminiscent of native regeneration, including formation of stratified cell sheets. However, only 3D-EVs promoted collective cell sheet migration and an epithelial-to-mesenchymal-like transition in keratinocytes, whereas 2D-EVs contained an anti-migratory stimulus. CONCLUSION: This study demonstrates how critical the culture environment is on influencing ASC-secretome regenerative capabilities. Additionally, the critical role of EVs in modulating epidermal regeneration is revealed and their translatability for future clinical therapies is discussed.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Keratinocytes , Cell Differentiation , Regeneration
2.
Front Med Technol ; 5: 1194314, 2023.
Article in English | MEDLINE | ID: mdl-37378005

ABSTRACT

Introduction: Wound healing consists of a dynamic series of events that are highly dependent on paracrine factors for proper progression through the phases of wound healing. Inappropriate progression through the phases is associated with insufficient epidermal regeneration (i.e., re-epithelialization) of wounds and subsequent propagation of chronic wounds, such as diabetic ulcers, which are associated with increased patient morbidity. Recently, investigation into the dynamic secretome of Adipose-derived Mesenchymal Stem Cells (ASCs), have shown promise in augmenting the wound healing response of chronic diabetic wounds. However, currently utilized 2D culture techniques are known to drastically alter the regenerative phenotype of ASCs. In this study a novel tissue-mimetic 3D system was utilized as a means to culture ASCs. Methods: The capacity for the ASC secretome to augment epidermal regeneration activity was then evaluated after exposure of ASCs to "wound priming stimuli" in 2D and 3D. The priming stimuli consisted of coating the 2D and 3D systems with the wound matrix proteins, collagen type I, fibronectin, and fibrin. To understand the potential benefit of the ASC secretome in the context of diabetic wounds, keratinocytes (KCs) were exposed to super-physiological glucose levels to induce a diabetic-like phenotype (idKCs). Results: Relative to KCs, idKC exhibited a 52% and 23% decline in proliferation and migration, respectively. Subsequently, analyses of the ASC secretome were performed. ASC conditioned media (ASC-CM) from tissue-mimetic culture demonstrated a > 50% increase secretion of proteins and a 2-fold increase in secreted EVs, relative to 2D culture. Interestingly, the different priming stimuli did not alter the total amount of protein or EVs secreted within the tissue-mimetic system. However, evaluation of specific soluble proteins via ELISA revealed significant differences in key epidermal regeneration factors, such as EGF, IGF-1, FGF-2, MMP-1, TIMP-1, and TGFß-1. Additionally, the relative effect of ASC-EVs from the 2D and 3D system on idKCs epidermal regeneration functionality varied significantly, with EVs from 3D-Collagen culture providing the most significant benefit on idKC activity. Discussion: Together, these data support the utilization of tissue-mimetic culture system to enhance the adaptability and secretory activity of MSC-like populations in order to generate tailored biologics, via priming stimuli, for specific wound healing applications.

3.
Wound Repair Regen ; 31(3): 367-383, 2023.
Article in English | MEDLINE | ID: mdl-36866522

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are a heterogenous population of multipotent and highly secretory cells currently being investigated in the field of wound healing for their ability to augment tissue responses. The adaptive response of MSC populations to the rigid substrate of current 2D culture systems has been considered to result in a deterioration of regenerative 'stem-like' properties. In this study, we characterise how the improved culture of adipose-derived mesenchymal stem cells (ASCs) within a tissue-mimetic 3D hydrogel system, that is mechanically similar to native adipose tissue, enhances their regenerative capabilities. Notably, the hydrogel system contains a porous microarchitecture that permits mass transport, enabling efficient collection of secreted cellular compounds. By utilising this 3D system, ASCs retained a significantly higher expression of ASC 'stem-like' markers while demonstrating a significant reduction in senescent populations, relative to 2D. Additionally, culture of ASCs within the 3D system resulted in enhanced secretory activity with significant increases in the secretion of proteinaceous factors, antioxidants and extracellular vesicles (EVs) within the conditioned media (CM) fraction. Lastly, treatment of wound healing cells, keratinocytes (KCs) and fibroblasts (FBs), with ASC-CM from the 2D and 3D systems resulted in augmented functional regenerative activity, with ASC-CM from the 3D system significantly increasing KC and FB metabolic, proliferative and migratory activity. This study demonstrates the potential beneficial role of MSC culture within a tissue-mimetic 3D hydrogel system that more closely mimics native tissue mechanics, and subsequently how the improved phenotype augments secretory activity and potential wound healing capabilities of the MSC secretome.


Subject(s)
Mesenchymal Stem Cells , Wound Healing , Wound Healing/physiology , Secretome , Keratinocytes/metabolism , Adipose Tissue , Fibroblasts/metabolism , Hydrogels/pharmacology , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism
4.
Regen Med ; 18(1): 23-36, 2023 01.
Article in English | MEDLINE | ID: mdl-36222003

ABSTRACT

Aim: To compare the physiological behavior of mesenchymal stem/stromal cells (MSCs) within an expandable tissue-mimetic 3D system relative to in vitro expansion in a traditional 2D system. Methods: Adipose-derived MSCs (ASCs) were continuously cultured for 6 weeks on either 2D culture plastic or in a 3D hydrogel system that eliminated subculturing. ASCs were assessed for senescence, 'stem-like' MSC markers, and ability for their secretome to augment a secondary cell population. Results: The 3D hydrogel system resulted in an enhanced retention of more regenerative, nonsenescent ASC populations that exhibited increased expression of 'stem-like' MSC surface markers. Conclusion: This study introduces a proof-of-concept design for a novel modular 3D system that can improve in vitro expansion of stem-like cell populations for future regenerative therapies.


Subject(s)
Hydrogels , Mesenchymal Stem Cells
5.
Biomater Res ; 26(1): 50, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36183134

ABSTRACT

Wound healing is a dynamic series of interconnected events with the ultimate goal of promoting neotissue formation and restoration of anatomical function. Yet, the complexity of wound healing can often result in development of complex, chronic wounds, which currently results in a significant strain and burden to our healthcare system. The advancement of new and effective wound care therapies remains a critical issue, with the current therapeutic modalities often remaining inadequate. Notably, the field of tissue engineering has grown significantly in the last several years, in part, due to the diverse properties and applications of polymeric biomaterials. The interdisciplinary cohesion of the chemical, biological, physical, and material sciences is pertinent to advancing our current understanding of biomaterials and generating new wound care modalities. However, there is still room for closing the gap between the clinical and material science realms in order to more effectively develop novel wound care therapies that aid in the treatment of complex wounds. Thus, in this review, we discuss key material science principles in the context of polymeric biomaterials, provide a clinical breadth to discuss how these properties affect wound dressing design, and the role of polymeric biomaterials in the innovation and design of the next generation of wound dressings.

6.
J Biomater Appl ; 37(1): 77-88, 2022 07.
Article in English | MEDLINE | ID: mdl-35317691

ABSTRACT

Electrospinning is a technique used to fabricate nano-/microfiber scaffolds for tissue engineering applications. However, a major limitation of electrospun scaffolds is the high packing density of fibers that leads to poor cellular infiltration. Thus, incorporation of a water soluble sacrificial porogen, polyethylene oxide (PEO), was utilized to fine-tune the porous fraction of the scaffolds and decrease fiber packing density. Poly(lactic-co-glycolic) acid (PLGA) scaffolds were either co-electrospun with sacrificial PEO microfibers or co-electrosprayed with sacrificial PEO microparticles at three different extrusion rates to control the relative morphology and dose of PEO. A dose-dependent response in PLGA scaffold bulk porosity and pore area was noted as PEO content was increased. Notably, PLGA scaffolds after removal of sacrificial PEO microparticles significantly increased the porous fraction and pore area approximately 8, 10, and 14% and 46, 20, and 33 µm2, respectively, relative to the analogous PEO microfiber scaffold. The tensile properties of the more porous PLGA scaffolds after PEO microparticle removal, remained stable for all extrusion rates of PEO tested, relative to the PLGA scaffolds after PEO microfiber removal. Histological analysis revealed that removal of PEO microparticles significantly increased the depth of cellular migration through the PLGA scaffolds, relative to PEO microfiber scaffolds, with maximum migratory depths of 1120 µm versus 150 µm over 28 days, respectively. Additionally, depth of cellular infiltration responded dose-dependently in the PEO microparticle scaffolds, whereas in the PEO microfiber scaffolds there was no correlation. Further analysis with Masson's Trichrome staining and electron microscopy revealed that collagen density and depth of deposition substantially increased in PLGA scaffolds after removal of PEO microparticles relative to PEO microfibers. Thus, this study demonstrates an effective strategy to control the porous fraction of electrospun scaffolds via the incorporation of sacrificial PEO microparticles, without significant decreases in mechanical properties, thereby enhancing cellular infiltration and subsequent extracellular matrix deposition.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Extracellular Matrix/metabolism , Polyethylene Glycols/metabolism , Porosity
7.
Wound Repair Regen ; 30(1): 64-81, 2022 01.
Article in English | MEDLINE | ID: mdl-34618990

ABSTRACT

Negative pressure wound therapy (NPWT) is used clinically to promote tissue formation and wound closure. In this study, a porcine wound model was used to further investigate the mechanisms as to how NPWT modulates wound healing via utilization of a form of NPWT called the vacuum-assisted closure. To observe the effect of NPWT more accurately, non-NPWT control wounds containing GranuFoam™ dressings, without vacuum exposure, were utilized. In situ histological analysis revealed that NPWT enhanced plasma protein adsorption throughout the GranuFoam™, resulting in increased cellular colonization and tissue ingrowth. Gram staining revealed that NPWT decreased bacterial dissemination to adjacent tissue with greater bacterial localization within the GranuFoam™. Genomic analysis demonstrated the significant changes in gene expression across a number of genes between wounds treated with non-NPWT and NPWT when compared against baseline tissue. However, minimal differences were noted between non-NPWT and NPWT wounds, including no significant differences in expression of collagen, angiogenic, or key inflammatory genes. Similarly, significant increases in immune cell populations were observed from day 0 to day 9 for both non-NPWT and NPWT wounds, though no differences were noted between non-NPWT and NPWT wounds. Furthermore, histological analysis demonstrated the presence of a foreign body response (FBR), with giant cell formation and encapsulation of GranuFoam™ particles. The unique in situ histological evaluation and genomic comparison of non-NPWT and NPWT wounds in this pilot study provided a never-before-shown perspective, offering novel insights into the physiological processes of NPWT and the potential role of a FBR in NPWT clinical outcomes.


Subject(s)
Negative-Pressure Wound Therapy , Wound Healing , Animals , Bandages , Pilot Projects , Swine
8.
Biomater Sci ; 9(4): 1397-1408, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33393536

ABSTRACT

Emulsion electrospinning is a versatile technique used to create fibrous meshes for applications in drug delivery and tissue engineering. In this study, the effects of surfactant and increasing internal phase volume fraction on emulsion electrospun fiber morphology were investigated. The fiber diameter, surface topography, internal architecture, mesh hydrophobicity, and fiber volume fraction were all characterized and the resulting effects on model drug release and cell response were determined. Surfactant relocation to the fiber surface resulted in alterations to fiber surface topography and internal morphology, increased rate of water adsorption into the mesh, and reduced burst effects of drug release. Increasing the internal phase volume fraction within the emulsion resulted in minimal change to fiber diameter, surface morphology, fiber volume fraction, and rate of water adsorption illustrating the ability to increase drug loading without affecting fiber properties. Lastly, all meshes promoted cell adhesion and good viability with a trend of increased MTT absorbance from cells on the surfactant and emulsion fibers possibly suggesting that an increase in surface area via smaller fiber diameter and fiber volume fraction increases metabolic activity. Overall, these studies indicate that fiber morphology and mesh hydrophobicity can be tuned by controlling surfactant location within fibers and internal phase volume fraction. Modulating fiber properties within the emulsion electrospun mesh is important to achieve controlled drug release and cell response for tissue engineering applications.


Subject(s)
Surface-Active Agents , Tissue Engineering , Cell Adhesion , Drug Liberation , Emulsions
9.
Biomed Mater ; 15(5): 055006, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32348975

ABSTRACT

A tissue engineered vessel has the potential to provide an alternative small diameter vascular graft for patients with cardiovascular disease in need of surgical revascularization. In this study, a polyglycolic acid (PGA) electrospun scaffold seeded with human dermal fibroblasts was stimulated with circumferential mechanical stretch by a pulsatile perfusion system. The PGA scaffold was fabricated using a custom electrospinning set-up to co-electrospray a sacrificial polyethylene oxide microparticle to increase pore size and bulk porosity. The tissue engineered vessel exposed to circumferential mechanical stretch was compared to an engineered vessel cultured under static conditions without any mechanical stimulation. The histology cross-sections demonstrated a similar thickness of engineered vessels with mechanical stretch and static, but on Masson's Trichrome stain there was nearly twice the amount of staining for collagen. The collagen content was quantified, and the collagen content was 60% greater in the human tissue engineered vessel exposed to mechanical stretch compared to the static vessel. The total collagen cross-linking was similar, but on a per collagen basis there was significantly more cross-linking in the static vessel over the stretch vessel. The stress-strain curve of the tissue engineered vessel with mechanical stretch demonstrated a statistically significantly greater ultimate tensile strength (UTS) of 1.86 ± 0.14 MPa (n = 6) and elastic modulus (EM) of 7.62 ± 0.39 MPa (n = 6) versus the static engineered vessel UTS of 0.31 ± 0.07 MPa (n = 5) and EM of 1.37 ± 0.21 MPa (n = 5). The primary determinant of the mechanical properties of the tissue engineered vessel correlated to the collagen content with minimal contribution of the collagen cross-linking. Therefore, the versatile properties of an electrospun scaffold are ideal in combination with a biomimetic culture system to generate a tissue engineered vessel composed of extracellular matrix suitable as a vascular graft.


Subject(s)
Biocompatible Materials/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Bioreactors , Blood Vessel Prosthesis , Collagen/chemistry , Cross-Linking Reagents/chemistry , Elastic Modulus , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , Myocytes, Smooth Muscle/physiology , Polyethylene Glycols/chemistry , Polyglycolic Acid/chemistry , Porosity , Pressure , Skin/metabolism , Stress, Mechanical , Tensile Strength
10.
J Biomed Mater Res A ; 107(9): 1954-1964, 2019 09.
Article in English | MEDLINE | ID: mdl-31033146

ABSTRACT

Electrospinning is a fabrication technique to generate three dimensional scaffolds with a fiber structure that imitates extracellular matrix for tissue engineering constructs. The versatile characteristics of the electrospinning process yields designer scaffolds made of biodegradable polymers or natural proteins with controllable fiber diameters, biodegradation, and mechanical properties. A limitation of conventional electrospun scaffolds is the dense fiber packing with low porosity that leads to poor cell infiltration. Electrospraying sacrificial polyethylene oxide (PEO) microparticles in combination with electrospun scaffolds are a method to increase porosity. We report the effectiveness of electrospraying PEO microparticles to increase porosity of the most commonly used biodegradable polymers: polyglycolic acid (PGA), poly (lactic-co-glycolic) acid (PLGA), and polycaprolactone (PCL). The biodegradable polymer electrospun scaffolds with the sacrificial PEO microparticles were found to have improved cell proliferation and infiltration with human fibroblasts compared to conventional electrospun scaffolds. The mechanical properties of the more robust PGA and PLGA had minor changes, but the more elastic PCL was observed to be weaker and less stiff after the removal of the PEO microparticles. Therefore, this study found PEO microparticles can increase porosity and cell infiltration with stable mechanical properties for a wide variety of biodegradable polymers in electrospun scaffolds.


Subject(s)
Biodegradable Plastics/chemistry , Fibroblasts/metabolism , Materials Testing , Polyethylene Glycols/chemistry , Tissue Scaffolds/chemistry , Cell Line , Fibroblasts/cytology , Humans , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porosity
11.
J Clin Imaging Sci ; 7: 38, 2017.
Article in English | MEDLINE | ID: mdl-29114437

ABSTRACT

Schwannomas are benign soft-tissue tumors that arise from peripheral nerve sheaths throughout the body and are commonly encountered in patients with neurofibromatosis Type 2. The vast majority of schwannomas are benign, with rare cases of malignant transformation reported. In this pictorial review, we discuss the magnetic resonance imaging (MRI) appearance of schwannomas by demonstrating a collection of tumors from different parts of the body that exhibit similar MRI characteristics. We review strategies to distinguish schwannomas from malignant soft-tissue tumors while exploring the anatomic and histologic origins of these tumors to discuss how this correlates with their imaging findings. Familiarity with the MRI appearance of schwannomas can help aid in the differential diagnosis of soft-tissue masses, especially in unexpected locations.

12.
PLoS One ; 12(4): e0175064, 2017.
Article in English | MEDLINE | ID: mdl-28380056

ABSTRACT

The newly purified extracellular polysaccharides (exopolysaccharides) from Parachlorella kessleri (PCEPS) were evaluated on their antitumor and immunomodulatory effects in cell culture and mouse colon carcinoma peritoneal dissemination model. In two-dimensional cell culture, the PCEPS treatment inhibited cell growth of both murine and human colon carcinoma cells in a dose- and time-dependent manner. In contrast, the growth of mouse splenocytes (SPLs) and bone marrow cells (BMCs) were stimulated by the treatment with PCEPS. The treatment with PCEPS also increased specific subpopulations of the cells in BMCs: antigen presenting cells (CD19+ B cells, 33D1+ dendritic cells and CD68+ macrophage) and CD8+ cytotoxic T cells. In three-dimensional spheroid culture, spheroid growth of CT26 cells co-cultured with HL-60 human neutrophilic promyeloblasts and Jurkat cells (human lymphoblasts), but not THP-1 human monocyte/macrophage was significantly attenuated by PCEPS treatment. In a mouse CT26 colon carcinoma peritoneal dissemination model, intraperitoneal injection of PCEPS (10 mg/kg, twice per week) significantly attenuated the growth of CT26 colon carcinoma in syngeneic mice. The present study suggests that PCEPS inhibits colon carcinoma growth via direct cell growth inhibition and a stimulation of the host antitumor immune responses. Taken together, the current study suggests that exopolysaccharides derived from Parachlorella kessleri contain significant bioactive materials that inhibit colon carcinoma growth.


Subject(s)
Antineoplastic Agents/therapeutic use , Chlorella/chemistry , Colonic Neoplasms/drug therapy , Immunologic Factors/therapeutic use , Plant Extracts/therapeutic use , Polysaccharides/therapeutic use , Animals , Bone Marrow Cells/drug effects , Cell Line, Tumor , Chlorophyta , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred BALB C , Spleen/cytology , Spleen/drug effects
13.
Mol Cancer ; 16(1): 32, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28148288

ABSTRACT

BACKGROUND: ADAM12 is upregulated in human breast cancers and is a predictor of chemoresistance in estrogen receptor-negative tumors. ADAM12 is induced during epithelial-to-mesenchymal transition, a feature associated with claudin-low breast tumors, which are enriched in cancer stem cell (CSC) markers. It is currently unknown whether ADAM12 plays an active role in promoting the CSC phenotype in breast cancer cells. METHODS: ADAM12 expression was downregulated in representative claudin-low breast cancer cell lines, SUM159PT and Hs578T, using siRNA transfection or inducible shRNA expression. Cell characteristics commonly associated with the CSC phenotype in vitro (cell migration, invasion, anoikis resistance, mammosphere formation, ALDH activity, and expression of the CD44 and CD24 cell surface markers) and in vivo (tumor formation in mice using limiting dilution transplantation assays) were evaluated. RNA sequencing was performed to identify global gene expression changes after ADAM12 knockdown. RESULTS: We found that sorted SUM159PT cell populations with high ADAM12 levels had elevated expression of CSC markers and an increased ability to form mammospheres. ADAM12 knockdown reduced cell migration and invasion, decreased anoikis resistance, and compromised mammosphere formation. ADAM12 knockdown also diminished ALDEFLUOR+ and CD44hi/CD24-/lo CSC-enriched populations in vitro and reduced tumorigenesis in mice in vivo. RNA sequencing identified a significant overlap between ADAM12- and Epidermal Growth Factor Receptor (EGFR)-regulated genes. Consequently, ADAM12 knockdown lowered the basal activation level of EGFR, and this effect was abolished by batimastat, a metalloproteinase inhibitor. Furthermore, incubation of cells with exogenously added EGF prevented the downregulation of CD44hi/CD24-/lo cell population by ADAM12 knockdown. CONCLUSIONS: These results indicate that ADAM12 actively supports the CSC phenotype in claudin-low breast cancer cells via modulation of the EGFR pathway.


Subject(s)
ADAM12 Protein/metabolism , Breast Neoplasms/metabolism , Claudins/metabolism , Neoplastic Stem Cells/metabolism , Phenotype , ADAM12 Protein/genetics , Animals , Biomarkers , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cluster Analysis , Disease Models, Animal , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Heterografts , Humans , Immunophenotyping , Mice , Prognosis , Signal Transduction , Tumor Burden
14.
Chem Res Toxicol ; 17(12): 1638-51, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15606140

ABSTRACT

1,2,3,4-Diepoxybutane (DEB) is a prominent carcinogenic metabolite of 1,3-butadiene (1,3-BD), an important industrial chemical and an environmental pollutant found in cigarette smoke and automobile exhaust. DEB is capable of inducing a variety of genotoxic effects, including point mutations, large deletions, and chromosomal aberrations. The mutagenicity and carcinogenicity of DEB are thought to result from its ability to form bifunctional DNA-DNA adducts by sequentially alkylating two nucleobases within the DNA double helix. We recently reported that DEB-induced DNA-DNA cross-linking leads to the formation of 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) adducts [Park, S., and Tretyakova, N. (2004) Structural characterization of the major DNA-DNA cross-link of 1,2,3,4-diepoxybutane. Chem. Res. Toxicol. 17 (2), 129-136]. However, guanine-guanine cross-linking by DEB cannot explain the development of A:T base pair mutations following exposure to DEB and 1,3-BD. In the present work, four asymmetrical DNA-DNA cross-links involving both adenine and guanine nucleobases were identified in double-stranded DNA treated with racemic DEB. These novel lesions were assigned the structures of 1-(aden-1-yl)-4-(guan-7-yl)-2,3-butanediol (N1A-N7G-BD), 1-(aden-3-yl)-4-(guan-7-yl)-2,3-butanediol (N3A-N7G-BD), 1-(aden-7-yl)-4-(guan-7-yl)-2,3-butanediol (N7A-N7G-BD), and 1-(aden-N6-yl)-4-(guan-7-yl)-2,3-butanediol (N6A-N7G-BD), based on the comparison of their MS/MS spectra, HPLC retention times, and UV spectra with those of the corresponding authentic standards prepared independently. Although guanine-adenine lesions are approximately 10 times less abundant in DEB-treated double-stranded DNA than the corresponding bis-N7G cross-links, N1A-N7G-BD and N6A-N7G-BD are more hydrolytically stable and, if formed in vivo, may accumulate in target tissues. HPLC-ESI-MS/MS analysis of guanine-adenine DEB cross-links induced in synthetic DNA duplexes 5'-(GGT)5, 5'-(GT)7G, and 5'-(GAA)5 (+-strand) demonstrate that G-A cross-linking by DEB produces primarily 1,3-interstrand N1A-N7G lesions. The formation of bifunctional guanine-adenine adducts is likely to contribute to AT base pair substitutions and deletion mutations following DEB exposure.


Subject(s)
Adenine/metabolism , DNA Adducts/chemistry , DNA Adducts/metabolism , Epoxy Compounds/toxicity , Guanine/metabolism , Mutagens/toxicity , DNA Adducts/analysis , Epoxy Compounds/metabolism , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...