Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(4): e0153151, 2016.
Article in English | MEDLINE | ID: mdl-27093610

ABSTRACT

BACKGROUND: Nutritional agents have modest efficacy in reducing weight and blood glucose in animal models and humans, but combinations are less well characterized. GSK2890457 (GSK457) is a combination of 4 nutritional agents, discovered by the systematic assessment of 16 potential components using the diet-induced obese mouse model, which was subsequently evaluated in a human study. NONCLINICAL RESULTS: In the diet-induced obese mouse model, GSK457 (15% w/w in chow) given with a long-acting glucagon-like peptide -1 receptor agonist, exendin-4 AlbudAb, produced weight loss of 30.8% after 28 days of treatment. In db/db mice, a model of diabetes, GSK457 (10% w/w) combined with the exendin-4 AlbudAb reduced glucose by 217 mg/dL and HbA1c by 1.2% after 14 days. CLINICAL RESULTS: GSK457 was evaluated in a 6 week randomized, placebo-controlled study that enrolled healthy subjects and subjects with type 2 diabetes to investigate changes in weight and glucose. In healthy subjects, GSK457 well tolerated when titrated up to 40 g/day, and it reduced systemic exposure of metformin by ~ 30%. In subjects with diabetes taking liraglutide 1.8 mg/day, GSK457 did not reduce weight, but it slightly decreased mean glucose by 0.356 mmol/L (95% CI: -1.409, 0.698) and HbAlc by 0.065% (95% CI: -0.495, 0.365), compared to placebo. In subjects with diabetes taking metformin, weight increased in the GSK457-treated group [adjusted mean % increase from baseline: 1.26% (95% CI: -0.24, 2.75)], and mean glucose and HbA1c were decreased slightly compared to placebo [adjusted mean glucose change from baseline: -1.22 mmol/L (95% CI: -2.45, 0.01); adjusted mean HbA1c change from baseline: -0.219% (95% CI: -0.910, 0.472)]. CONCLUSIONS: Our data demonstrate remarkable effects of GSK457 in rodent models of obesity and diabetes, but a marked lack of translation to humans. Caution should be exercised with nutritional agents when predicting human efficacy from rodent models of obesity and diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT01725126.


Subject(s)
Biological Factors/pharmacology , Blood Glucose/drug effects , Body Weight/drug effects , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Adolescent , Adult , Aged , Animals , Diabetes Mellitus, Type 2/metabolism , Female , Glucagon-Like Peptide 1/metabolism , Healthy Volunteers , Humans , Hypoglycemic Agents/pharmacology , Liraglutide/pharmacology , Male , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Middle Aged , Weight Loss/drug effects , Young Adult
2.
Postgrad Med ; 126(7): 84-97, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25387217

ABSTRACT

UNLABELLED: Albiglutide is a glucagon-like peptide-1 analogue composed of tandem copies of modified human glucagon-like peptide-1 (7-36) coupled to recombinant human albumin that is approved in adults for the treatment of type 2 diabetes mellitus. After subcutaneous administration, albiglutide is likely primarily absorbed via the lymphatic circulation, with maximum concentrations being reached in 3 to 5 days; steady-state exposures are achieved following approximately 4 to 5 weeks of once-weekly administration. The elimination half-life of albiglutide is approximately 5 days. Clearance of albiglutide is 67 mL/h with between-subject variability of 34.9%; no covariates have been identified that would require dose adjustment of albiglutide. Albiglutide lowers the fasting plasma glucose and reduces postprandial glucose excursions. In addition, ß-cell secretion is enhanced by albiglutide during hyperglycemia, whereas secretion is suppressed during hypoglycemia; α-cell response to hypoglycemia is not impaired by albiglutide. Albiglutide does not prolong the corrected QT interval but has a modest effect on heart rate in patients with type 2 diabetes mellitus. Dose adjustment is not suggested in patients with renal impairment, but experience in patients with severe renal impairment is very limited, and it is recommended that albiglutide be used with care in such patients due to an increased frequency of diarrhea, nausea, and vomiting. No clinically relevant drug interactions have been observed in clinical trials. TRIAL REGISTRATION: NCT00938158, NCT01406262, NCT00537719, NCT01077505, NCT01147731, NCT01147718, NCT01147692, NCT00354536, NCT00394030, NCT00530309, NCT01357889, NCT00518115, NCT01098461, NCT01475734, NCT00849017, NCT00838916, NCT00839527, NCT01098539.


Subject(s)
Glucagon-Like Peptide 1/analogs & derivatives , Incretins/pharmacology , Receptors, Glucagon/agonists , Absorption, Physiological , Blood Glucose/drug effects , Drug Interactions , Drug Therapy, Combination , Glucagon-Like Peptide 1/administration & dosage , Glucagon-Like Peptide 1/pharmacokinetics , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide-1 Receptor , Half-Life , Heart Rate/drug effects , Humans , Incretins/administration & dosage , Incretins/pharmacokinetics , Kidney/drug effects , Liver/drug effects , Simvastatin/therapeutic use , Warfarin/pharmacology
3.
Nutr J ; 13: 45, 2014 May 17.
Article in English | MEDLINE | ID: mdl-24886409

ABSTRACT

BACKGROUND: Dietary carbohydrates may affect metabolic and physiologic parameters. The present study evaluated whether a combination of two dietary fibers, oligofructose (OFS) and pectin (P), altered satiety and glycemic parameters. The primary objective of this study was to determine whether dietary supplementation for 3 weeks with OFS + P would produce a greater reduction in energy intake of an ad libitum test meal compared to control. METHODS: This was a single center, randomized, double-blind, placebo-controlled, parallel group study in overweight and obese, otherwise healthy, subjects (N = 96). There were two OFS + P treatment groups: high-dose (30 g/d), low-dose (15 g/d), and a control group (maltodextrin 15 g/d). Energy intake, appetite measures based on Satiety Labeled Intensity Magnitude (SLIM) scale, fasting and post-prandial glucose, and insulin levels and body weight were measured at baseline and at the end of 3 weeks. Adverse events and gastrointestinal tolerability of the treatments were also assessed. RESULTS: An analysis of covariance (ANCOVA) performed on the primary endpoint change from baseline in energy intake, showed no statistically significant difference in energy intake among the three treatment groups (p = 0.5387). The LS mean changes (SE) in energy intake from baseline to week 3 were -58.3 (42.4) kilocalories (kcal) for the high dose group, -74.2 (43.6) kcal for the low dose group, and -9.0 (42.9) kcal for the control group. For the pairwise comparisons of OFS + P doses and control, confidence intervals were constructed around the difference in LS mean changes. All study products were generally well tolerated. CONCLUSION: There was a directional benefit in ad libitum energy intake for both OFS + P doses compared to control, with a greater reduction in kilocalories in the low dose comparison, but the reductions were not significant. Further studies are warranted. CLINICAL TRIAL REGISTRATION: GSK Clinical Study Register # W7781293.


Subject(s)
Blood Glucose/drug effects , Dietary Fiber/administration & dosage , Oligosaccharides/administration & dosage , Pectins/administration & dosage , Adult , Appetite/drug effects , Dietary Fiber/pharmacology , Double-Blind Method , Energy Intake/drug effects , Female , Humans , Male , Middle Aged , Obesity/drug therapy , Oligosaccharides/pharmacology , Overweight , Pectins/pharmacology , Satiation
4.
Clin Pharmacol Drug Dev ; 2(3): 213-22, 2013 Jul.
Article in English | MEDLINE | ID: mdl-27121782

ABSTRACT

TGR5 is a bile acid receptor and a potential target for the treatment of type 2 diabetes (T2D). We report here the safety, pharmacokinetics, and pharmacodynamic effects of a selective TGR5 agonist, SB-756050, in patients with T2D. Fifty-one subjects were randomized to receive either placebo or one of four doses of SB-756050 for 6 days. A single 100 mg dose of sitagliptin was co-administered on Day 6 to all subjects. SB-756050 was well-tolerated; it was readily absorbed, exhibited nonlinear pharmacokinetics with a less than dose-proportional increase in plasma exposure above 100 mg, and demonstrated no significant changes in exposure when co-administered with sitagliptin. SB-756050 demonstrated highly variable pharmacodynamic effects both within dose groups and between doses, with increases in glucose seen at the two lowest doses and no reduction in glucose seen at the two highest doses. The glucose effects of SB-756050 + sitagliptin were comparable to those of sitagliptin alone, even though gut hormone plasma profiles were different. This study was registered at ClinicalTrials.gov (NCT00733577).

5.
PLoS One ; 7(11): e49337, 2012.
Article in English | MEDLINE | ID: mdl-23189142

ABSTRACT

Tissue water transverse relaxation times (T2) are highly sensitive to fluid and lipid accumulations in skeletal muscles whereas the related T2* is sensitive to changes in tissue oxygenation in addition to factors affecting T2. Diabetes mellitus (DM) affects muscles of lower extremities progressively by impairing blood flow at the macrovascular and microvascular levels. This study is to investigate whether T2 and T2* are sensitive enough to detect abnormalities in skeletal muscles of diabetic patients in the resting state. T2 and T2* values in calf muscle of 18 patients with type 2 DM (T2DM), 22 young healthy controls (YHC), and 7 age-matched older healthy controls (OHC) were measured at 3T using multi-TE spin echo and gradient echo sequences. Regional lipid levels of the soleus muscle were also measured using the Dixon method in a subset of the subjects. Correlations between T2, T2*, lipid levels, glycated hemoglobin (HbA1c) and presence of diabetes were evaluated. We found that T2 values were significantly higher in calf muscles of T2DM subjects, as were T2* values in anterior tibialis, and gastrocnemius muscles of T2DM participants. However, soleus T2* values of the T2DM subjects were significantly lower than those of the older, age-matched HC cohort (22.9±0.5 vs 26.7±0.4 ms, p<0.01). The soleus T2* values in the T2DM cohort were inversely correlated with the presence of diabetes (t = -3.46, p<0.001) and with an increase in HbA1c, but not with body mass index or regional lipid levels. Although multiple factors may contribute to changes in T2* values, the lowered T2* value observed in the T2DM soleus muscle is most consistent with a combination of high oxygen consumption and poor regional perfusion. This finding is consistent with results of previous perfusion studies and suggests that the soleus in individuals with T2DM is likely under tissue oxygenation stress.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/metabolism , Magnetic Resonance Imaging , Muscle, Skeletal/metabolism , Oxygen Consumption , Adult , Aged , Body Mass Index , Glycated Hemoglobin/metabolism , Humans , Leg , Middle Aged , Young Adult
6.
J Clin Endocrinol Metab ; 93(12): 4810-7, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18812476

ABSTRACT

CONTEXT: Native glucagon-like peptide-1 increases insulin secretion, decreases glucagon secretion, and reduces appetite but is rapidly inactivated by dipeptidyl peptidase-4. Albiglutide is a novel dipeptidyl peptidase-4-resistant glucagon-like peptide-1 dimer fused to human albumin designed to have sustained efficacy in vivo. OBJECTIVES: The objectives were to investigate pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide in type 2 diabetes subjects. METHODS: In a single-blind dose-escalation study, 54 subjects were randomized to receive placebo or 9-, 16-, or 32-mg albiglutide on d 1 and 8. In a complementary study, 46 subjects were randomized to a single dose (16 or 64 mg) of albiglutide to the arm, leg, or abdomen. RESULTS: Significant dose-dependent reductions in 24-h mean weighted glucose [area under the curve((0-24 h))] were observed, with placebo-adjusted least squares means difference values in the 32-mg cohort of -34.8 and -56.4 mg/dl [95% confidence interval (-54.1, -15.5) and (-82.2, -30.5)] for d 2 and 9, respectively. Placebo-adjusted fasting plasma glucose decreased by -26.7 and -50.7 mg/dl [95% confidence interval (-46.3, -7.06) and (-75.4, -26.0)] on d 2 and 9, respectively. Postprandial glucose was also reduced. No hypoglycemic episodes were detected in the albiglutide cohorts. The frequency and severity of the most common adverse events, headache and nausea, were comparable with placebo controls. Albiglutide half-life ranged between 6 and 7 d. The pharmacokinetics or pharmacodynamic of albiglutide was unaffected by injection site. CONCLUSIONS: Albiglutide improved fasting plasma glucose and postprandial glucose with a favorable safety profile in subjects with type 2 diabetes. Albiglutide's long half-life may allow for once-weekly or less frequent dosing.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide 1/physiology , Hypoglycemic Agents/therapeutic use , Adolescent , Adult , Aged , Area Under Curve , Blood Glucose/metabolism , Dose-Response Relationship, Drug , Female , Glucagon-Like Peptide 1/adverse effects , Glucagon-Like Peptide 1/pharmacokinetics , Glucagon-Like Peptide 1/therapeutic use , Glycated Hemoglobin/metabolism , Half-Life , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacokinetics , Injections, Intravenous , Male , Middle Aged , Molecular Mimicry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...