Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chimia (Aarau) ; 78(3): 123-128, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38547013

ABSTRACT

Two applications of a radical trap based on a homolytic substitution reaction (SH2') are presented for the trapping of short-lived radical intermediates in organic reactions. The first example is a photochemical cyanomethylation catalyzed by a Ru complex. Two intermediate radicals in the radical chain propagation have been trapped and detected using mass spectrometry (MS), along with the starting materials, products and catalyst degradation fragments. Although qualitative, these results helped to elucidate the reaction mechanism. In the second example, the trapping method was applied to study the radical initiation catalyzed by a triethylboronoxygen mixture. In this case, the concentration of trapped radicals was sufficiently high to enable their detection by nuclear magnetic resonance (NMR). Quantitative measurements made it possible to characterize the radical flux in the system under different reaction conditions (including variations of solvent, temperature and concentration) where modelling was complicated by chain reactions and heterogeneous mass transfer.

2.
J Am Chem Soc ; 145(32): 18126-18140, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37526380

ABSTRACT

Azole anions are highly competent in the activation of weak acyl donors, but, unlike neutral (aprotic) Lewis bases, are not yet widely applied as acylation catalysts. Using a combination of in situ and stopped-flow 1H/19F NMR spectroscopy, kinetics, isotopic labeling, 1H DOSY, and electronic structure calculations, we have investigated azole-catalyzed aminolysis of p-fluorophenyl acetate. The global kinetics have been elucidated under four sets of conditions, and the key elementary steps underpinning catalysis deconvoluted using a range of intermediates and transition state probes. While all evidence points to an overarching mechanism involving n-π* catalysis via N-acylated azole intermediates, a diverse array of kinetic regimes emerges from this framework. Even seemingly minor changes to the solvent, auxiliary base, or azole catalyst can elicit profound changes in the temporal evolution, thermal sensitivity, and progressive inhibition of catalysis. These observations can only be rationalized by taking a holistic view of the mechanism and a set of limiting regimes for the kinetics. Overall, the analysis of 18 azole catalysts spanning nearly 10 orders of magnitude in acidity highlights the pitfall of pursuing ever more nucleophilic catalysts without regard for catalyst speciation.

3.
J Am Chem Soc ; 141(17): 7181-7193, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30943722

ABSTRACT

Controlling the regioselectivity of ambident nucleophiles toward alkylating agents is a fundamental problem in heterocyclic chemistry. Unsubstituted triazoles are particularly challenging, often requiring inefficient stepwise protection-deprotection strategies and prefunctionalization protocols. Herein we report on the alkylation of archetypal ambident 1,2,4-triazole, 1,2,3-triazole, and their anions, analyzed by in situ 1H/19F NMR, kinetic modeling, diffusion-ordered NMR spectroscopy, X-ray crystallography, highly correlated coupled-cluster computations [CCSD(T)-F12, DF-LCCSD(T)-F12, DLPNO-CCSD(T)], and Marcus theory. The resulting mechanistic insights allow design of an organocatalytic methodology for ambident control in the direct N-alkylation of unsubstituted triazole anions. Amidinium and guanidinium receptors are shown to act as strongly coordinating phase-transfer organocatalysts, shuttling triazolate anions into solution. The intimate ion pairs formed in solution retain the reactivity of liberated triazole anions but, by virtue of highly regioselective ion pairing, exhibit alkylation selectivities that are completely inverted (1,2,4-triazole) or substantially enhanced (1,2,3-triazole) compared to the parent anions. The methodology allows direct access to 4-alkyl-1,2,4-triazoles ( rr up to 94:6) and 1-alkyl-1,2,3-triazoles ( rr up to 99:1) in one step. Regioselective ion pairing acts in effect as a noncovalent in situ protection mechanism, a concept that may have broader application in the control of ambident systems.

4.
Chem Commun (Camb) ; 46(11): 1813-23, 2010 Mar 21.
Article in English | MEDLINE | ID: mdl-20198220

ABSTRACT

Despite the amide formation reaction being one of the key cornerstone reactions in organic chemistry, the direct amide formation is both little used and little explored. Acceptance of the feasibility and general applicability of the reaction depends upon the ability of researchers to bring it into the mainstream by development of: (1) an understanding of the mechanism of the reaction; and (2) the design of catalysts which promote the reaction on a wide range of substrates and under ambient conditions. From the earliest report of the direct amide formation in the 19th century, there have been relatively few reports of mechanistic studies, though it is clear that there is not a simple relationship between ease of direct amide formation and the pK(a) of the carboxylic acid and amine, or whether salt ammonium carboxylate formation is important. Consequently, direct amide formation has historically been run under higher temperature conditions. However, more recently, stoichiometric and catalytic boron compounds have been developed that considerably reduce the reaction temperatures under which direct amide formation will proceed. Limited attempts at mechanistic studies point to the formation of acyloxyborate or boronate species acting essentially as mixed anhydrides, though the exact order of these systems remains to be categorically determined.

5.
Chem Commun (Camb) ; (42): 6430-2, 2009 Nov 14.
Article in English | MEDLINE | ID: mdl-19841799

ABSTRACT

Employing co-catalytic zinc reagents facilitates the iron-catalysed Suzuki cross-coupling of tetraarylborates with both benzyl and 2-heteroaryl halides.


Subject(s)
Benzyl Compounds/chemistry , Borates/chemistry , Iron/chemistry , Pyridines/chemistry , Zinc/chemistry , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...